
Reverse Engineering from Assembler to Formal Specifications via

Program Transformations

M. P. Ward

Software Technology Research Lab

De Montfort University

The Gateway,

Leicester LE1 9BH, UK

Martin.Ward@durham.ac.uk

Abstract

The FermaT transformation system, based on re-
search carried out over the last sixteen years at
Durham University, De Montfort University and Soft-
ware Migrations Ltd., is an industrial-strength formal
transformation engine with many applications in pro-
gram comprehension and language migration. This
paper is a case study which uses automated plus
manually-directed transformations and abstractions
to convert an IBM 370 Assembler code program into
a very high-level abstract specification.

1 Introduction

Keywords: Assembler, Migration, Comprehension,
Formal Methods, Abstraction, WSL, Wide Spectrum
Language, Program Transformation, Legacy Systems,
Restructuring.

2 Introduction

There is a vast collection of operational software
systems which are vitally important to their users,
yet are becoming increasingly difficult to maintain,
enhance and keep up to date with rapidly changing
requirements. For many of these so called legacy

systems the option of throwing the system away and
re-writing it from scratch is not economically viable.
Methods are therefore urgently required which enable
these systems to evolve in a controlled manner. In
particular, legacy assembler systems have high main-
tenance costs, and migrating such systems to a dif-
ferent environment (eg. a client-server architecture) is

much more difficult than for high-level language sys-
tems. The FermaT transformation system uses formal
proven program transformations, which preserve or
refine the semantics of a program while changing its
form. These transformations are applied to restruc-
ture and simplify the legacy systems and to extract
higher-level representations.
By using an appropriate sequence of transforma-

tions, the extracted representation is guaranteed to
be equivalent to the original code logic. The method
is based on a formal wide spectrum language, called
WSL, with accompanying formal method. Over the
last sixteen years we have developed a large catalogue
of proven transformations, together with mechanically
verifiable applicability conditions. These have been
applied to many software development, reverse engin-
eering and maintenance problems.

3 Theoretical Foundation

The theoretical work on which FermaT is based ori-
ginated not in software maintenance, but in research
on the development of a language in which proofs
of equivalence for program transformations could be
achieved as easily as possible for a wide range of
constructs.
WSL is the “Wide Spectrum Language” used in

our program transformation work, which includes low-
level programming constructs and high-level abstract
specifications within a single language. This has
the advantage that one does not need to differenti-
ate between programming and specification languages:
the entire transformational development of a program
from abstract specification to detailed implementation
can be carried out in a single language. Conversely,

the entire reverse-engineering process, from a translit-
eration of the source program to a high-level specific-
ation, can also be carried out in the same language.
During either of these processes, different parts of
the program may be expressed at different levels of
abstraction. So a wide-spectrum language forms an
ideal tool for developing methods for formal program
development and also for formal reverse engineering
(for which we have coined the term inverse engineer-

ing).
A program transformation is an operation which

modifies a program into a different form which has
the same external behaviour (i.e. it is equivalent under
a precisely defined denotational semantics). Since
both programs and specifications are part of the same
language, transformations can be used to demonstrate
that a given program is a correct implementation of a
given specification.
A refinement is an operation which modifies a pro-

gram to make its behaviour more defined and/or more
deterministic. A typical implementation of a non-
deterministic specification will be a refinement rather
than a strict equivalence. The opposite of refinement
is abstraction: we say that a specification is an ab-
straction of a program which implements it. See [5,6]
and [1] for a description of refinement.
The syntax and semantics of WSL are described in

[8,9,12] so will not be discussed in detail here. Most
of the constructs in WSL, for example if statements,
while loops, procedures and functions, are common
to many programming languages. However there are
some features relating to the “specification level” of
the language which are unusual. Expressions and
conditions (formulae) in WSL are taken directly from
first order logic: in fact, an infinitary first order logic
is used (see [4] for details), which allows countably
infinite disjunctions and conjunctions. This use of
first order logic means that statements in WSL can
include existential and universal quantification over
infinite sets, and similar (non-executable) operations.
Two list operators are also used in specifications: for
a unary function f and list L = 〈a1, . . . , an〉 the map
operator ∗ is defined:

f ∗ L =
DF

〈f(a1), f(a2), . . . , f(an)〉

For a binary operator g and non-empty list L the
reduce operator / is defined:

g/L =
DF

a1 if n = 1

=
DF

g(a1, g/〈a2, . . . , an〉) if `(L) > 1

For example, if f is a function which returns integers,
and L is a non-empty list of suitable arguments for f ,

then +/f ∗ L is the result of applying f to every
element of L and adding up the results. We also
use `(L) to denote the length of list L and L[i . . j]
to denote the sublist 〈ai, . . . , aj〉.
Over the last sixteen years we have been developing

the WSL language, in parallel with the development
of a transformation theory and proof methods. Over
this time the language has developed from a simple
and tractable kernel language [9] to a complete and
powerful programming language. At the “low-level”
end of the language there exist automatic translators
from IBM Assembler into WSL, and from a subset of
WSL into C. At the “high-level” end it is possible to
write abstract specifications, similar to Z and VDM.
In [10,13] program transformations are used to de-

rive a variety of efficient algorithms from abstract
specifications. In [10,12,13] the same transformations
are used in the reverse direction: using transforma-
tions to derive a concise abstract representation of the
specification for several challenging programs.
In [11] we describe a case study using FermaT

to migrate an assembler program to modular and
maintainable C code, using purely automatic trans-
formations with no manual intervention. As far as
we know, none of the other researchers in program
transformations (for example, [2,7]) have attempted to
apply their methods to assembler code. The nearest
research is Cristina Cifuentes work on decompilation
and binary translation [Cifuentes CSMR00].
In this paper we go even further in the reverse

engineering process. Starting with the same assembler
program from [11] we use formal transformations to
abstract an equivalent high-level specification of the
program.

4 Example Transformations in FermaT

In this section we describe a small number of the
transformations implemented in FermaT which are
used in the case study. If S1 and S2 are any WSL
statements and ∆ is any countable set of formulae
with no free variables, then we write ∆ ` S1 ≤ S2

to denote that S2 is a refinement of S1 whenever all
the formulae on ∆ are true. If ∆ ` S1 ≤ S2 and
∆ ` S2 ≤ S1 then we write ∆ ` S1 ≈ S2 and say
that S1 and S2 are equivalent. If S2 is generated from
S1 by a program transformation, then ∆ ` S1 ≈ S2,
where ∆ is the set of applicability conditions for the
transformation.

4.1 Expand Forwards

If B is any condition and S1, S2 and S3 are any
statements then:

∆ ` if B then S1 else S2 fi; S3 ≈

if B then S1; S3 else S2; S3 fi

4.2 Loops

As well as the usual for and while loops, there
is a notation for unbounded loops. Statements of the
form do S od, where S is a statement, are “infinite” or
“unbounded” loops which can only be terminated by
the execution of a statement of the form exit(n) which
causes the program to exit the n enclosing loops. We
use exit as an abbreviation for exit(1). To simplify
the language we disallow exits which leave a block or
a loop other than an unbounded loop. We also insist
that n be an integer, not a variable or expression—this
ensures that we can always determine the target of the
exit.

Definition 4.1 Global Substitution

If P(S, p) is a predicate on a statement S and position
p within S, and S′(S, p) is a function which returns
a statement for any given statement S and p, then
the effect of replacing or appending to the statement
at position p in S with S′(S, p) for every p such that
P(S, p) holds is denoted:

S
[

S′(S, p) / p
∣

∣ P(S, p)
]

If the statement at position p in S is an exit statement,
then it is replaced by S′(S, p). Otherwise, S′(S, p) is
appended in sequence after the statement at position
p.
Within a global substitution we use δ(S, p) to de-

note the depth of a component of a statement. This is
the number of enclosing do . . . od loops surrounding
the component. We use τ(S, p) to denote the ter-
minal value of a statement. This is the number of
enclosing loops around S which might be terminated
by execution of the statement at position p in S. If
the statement at position p in S does not terminate
S then τ(S, p) = −1. For example, any exit(n) has
terminal value n. If S contains an exit(n) within m
nested loops (where m 6 n) then the terminal value
of S itself, denoted τ(S, 〈〉), will be at least n−m. A
statement S with terminal value zero cannot terminate
any enclosing loops, so the next thing to be executed
after S will be the next statement in the sequence
containing S (if there is one). Such a statement is

called a proper sequence. If S is a proper sequence,
then:

∆ ` do if B then exit fi; S od ≈ while ¬B do S od

In the following transformations, the global substi-
tutions are all applied to the simple terminal state-

ments of S. These are the statements which are
neither a sequence, a conditional, or a do . . . od loop
and which will terminate S if they are executed. For
example, in:

if B then x := 1; y := 2 else exit fi

the terminal statements are y := 2 and exit. If the
statement is enclosed in a do . . . od loop, only the
exit will be a terminal statement.
We usually omit the parameters from δ and τ in a

global substitution when these are obvious from the
context.

Definition 4.2 Incrementation

The incrementation of S by n (where n is any non-
negative integer) is defined as the incrementation of
all simple terminal statements in S. An exit is in-
cremented by incrementing its parameter, while any
other simple statement is incremented by appending
an exit:

S+ n =
DF

S [exit(n+ δ) / p | τ > 0]

For example:

if B then x := 1; y := 2 else exit fi+ 2

= if B then x := 1; y := 2; exit(2) else exit(3) fi

while:

do if B then x := 1; y := 2 else exit fi od+ 2

= do if B then x := 1; y := 2 else exit(3) fi od

Definition 4.3 Partial Incrementation

The notation S + (n,m) where m > 0 denotes in-
crementation of the terminal statements in S with
terminal value m or greater:

S+ (n,m) =
DF

S [exit(n+ δ) / p | τ > m]

Note that do S od+ (n,m) = do S+ (n,m+ 1) od.

4.3 Absorption

For any statements S1 and S2:

∆ ` S1; S2 ≈ S1 [S2 + δ / p | τ = 0]

For example:

do if B then x := 1; y := 2 else exit fi od; z := 1

do if B then x := 1; y := 2 else z := 1; exit fi od

This transformation can be applied in reverse to “take
out” code from a loop.

4.4 False Loop

We can insert a loop around any statement, by
incrementing it first:

∆ ` S ≈ do S+ 1 od

(This is a “false loop” because the body of the loop
can only be executed once).

4.5 Loop Doubling

Any loop can be converted to a double loop by the
last transformation, or by incrementing the body of
the loop:

∆ ` do S od ≈ do do S od+ 1 od

≈ do do S+ 1 od od

More generally, we can arbitrarily decide whether or
not to increment each terminal statement in S with
terminal value zero:

∆ ` do S od ≈
do do S [exit(δ + 1)/p

| τ > 0 ∨ τ = 0 ∧ Ψ(S, p)] od od

Where Ψ is any condition on S and p.
This can be combined with the inverse of absorption

to “isolate” part of a loop body. For example:

∆ ` do S; if B then S1 else S2 fi od

≈ do do S+ (1, 1);
if B then exit else S2 + (1, 1) fi od;

S1 od

4.6 Loop Inversion

If S1 is a proper sequence then:

∆ ` do S1; S2 od ≈ S1; do S2; S1 od

More generally, for any statements S1 and S2:

∆ ` do S1; S2 od ≈ do S1; do S2; S1 od+ 1 od

4.7 Loop Unrolling

We can unroll the first step of a loop:

∆ ` do S od ≈ S[do S od+ δ + 1 / p | τ = 0]

[exit(τ + δ − 1) / p | τ > 1]

where the RHS contains two successive global substi-
tutions on S.
More generally, we can insert a copy of the whole

loop, with certain terminal statements of the loop
body incremented, after certain terminal statements
in the loop body. Let S′ be formed from S by incre-
menting selected terminal statements with terminal
value zero:

S′ = S [exit(δ + 1) / p | τ = 0 ∧ Φ(S, p)]

where Φ is any condition (see Section 4.5). Then:

∆ ` do S od

≈ do S
[

do S′ od+ δ + 1 / p
∣

∣ τ = 0 ∧ Ψ(S, p)
]

[exit(τ + δ − 1) / p | τ > 1] od

where Ψ is any condition.

5 Modelling Assembler in WSL

Constructing a useful scientific model necessarily
involves throwing away some information: in other
words, to be useful a model must be inaccurate, or at
least idealised, to a certain extent. For example “ideal
gases”, “incompressible fluids” and “billiard ball mo-
lecules” are all useful models which gain their utility
by abstracting away some details of the real world. In
the case of modelling a programming language, such as
Assembler, it is theoretically possible to have a perfect
model of the language which correctly captures the
behaviour of all assembler programs. Certain features
of Assembler, such as branching to register addresses,
self-modifying code and so on, would imply that such
a model would have to record the entire state of the
machine, including all registers, memory, disk space,
and external devices, and “interpret” this state as each
instruction is executed. (Consider the effect of loading
some data from a disk file into memory, performing
arithmetic at arbitrary places in the data, and then
branching to the start of the data block!) Unfortu-
nately, such a model is useless for reverse engineering
or migration purposes.
What we need is a practical model for assembler

programs which is suitable for reverse engineering, and
is accurate enough to deal with all the programming
constructs which are likely to be encountered.

5.1 Assembler to WSL Translation

The aim of the assembler to WSL translator is to
generate WSL code which models as accurately as pos-
sible the behaviour of the original assembler module,
without worrying too much about the size, efficiency
or complexity of the resulting code. Typically, the raw
WSL translation of an assembler module will be three
to five times bigger than the source file and have a
very high McCabe cyclomatic complexity (typically
in the hundreds, often in the thousands). This is,
in part, because every “branch to register” instruc-
tion branches to the dispatch routine, which in turn
contains branches to every possible return point. In
addition, every instruction which sets the “condition
code” flags will is translated into WSL code which
assigns an appropriate value to a special variable cc (to
emulate the condition code): whether or not the con-
dition code is subsequently tested. See [11] for further
details of the assembler to WSL translation process
and the various features of commercial assembler code
which it has to deal with.
However, the FermaT transformation engine in-

cludes some very powerful transformations for sim-
plifying WSL code, removing redundancies, tracking
dispatch codes, and so on. In most cases FermaT
can automatically unscramble the tangle of “branch
and save” and “branch to register” code to extract
self-contained, single-entry single-exit procedures and
so eliminate the dispatch procedure. In addition,
FermaT can nearly always eliminate the cc variable
by constructing appropriate conditional statements.

6 The Sample Program

Our sample program is from “A Guided Tour of
Program Design Methodologies”, by G. D. Bergland
[3] who in turn took it from a story called “Getting it
Wrong” that has been related by Michael Jackson on
numerous occasions:

proc Management Report ≡
var SW1 := 0,SW2 := 0 :
Produce Heading;
read(stuff);
while NOT eof(stuff) do
if First Record In Group

then if SW1 = 1
then Process End Of Previous Group

fi;
SW1 := 1;
Process Start Of New Group;

Process Record;
SW2 := 1

else

Process Record; SW2 := 1
fi;
read(stuff)

od;
if SW2 = 1 then Process End Of Last Group

fi;
Produce Summary

end.

The program is a simple report generator which reads
a sorted transaction file: each transaction contains the
name of an item and the amount received or distrib-
uted from the warehouse. The program generates a
report showing the net change in inventory for each
item in the transaction file.
Our resident assembler guru was given the above

pseudocode and asked to write an assembler imple-
mentation which uses as many “features” of assembler
as possible. The result is given in Section 11 (I
should like to point out on his behalf that this is
not his normal coding style!) The program includes
self-modifying code: the “first time through switch”
SW1 is implemented by modifying the branch labelled
LAAA to a NOP in the instruction labelled LAB, and an
EXecute statement has been used to get a variable
length move.

7 Automatic Program Transformation

The first stage in the transformation process is Data
Translation. This transformation uses the restruc-
tured data file to change the data representation in the
program. Initially all data is accessed directly from
memory (represented as the byte array a) by adding
the base register to the displacement to get an address.
The restructured data file gives the layout of all data in
memory, so by making some reasonable assumptions
about non-overlapping DSECTS etc., FermaT is able
to transform the program into an equivalent program
where the data is accessed directly through variables
and structures. For example, consider the “raw WSL”
statement:

!P mvc(a[db(writem, r3), 3 + 1]
var a[db(wlast, r3), 3 + 1]);

Here, the !P indicates an external procedure call to
the mvc procedure which implements the MVC (move
characters) instruction. This moves the given num-
ber of characters from the given source address to

the given destination address. The function db(x, y)
simply returns x + y, the displacement plus the base
register, so the source address is writem + r3 and the
destination address is wlast + r3. After data transla-
tion, the same names are used as the actual variables
and the base registers are eliminated.
This statement is automatically transformed into

the simple assignment:

wlast := wrec.writem;

In the case of our simple program, there is only one
structure to uncover: the wrec print record which
contains fields writem, wrtype and wrqty plus some
unnamed fillers.
The next stage is control flow restructuring: elim-

inating non-essential labels and branches, introducing
loops. This is carried out in a series of passes through
the program, at each iteration the program is searched
for points where a simplifying transformation (such as
loop insertion or branch merging) can be applied. The
iteration is continued until no further improvement
can be achieved.
The raw WSL is written as an action system, a

collection of parameterless procedures (actions) where
execution of any actuin will always lead to either
calling another action, or calling the special action Z
which terminates the whole action system. An action
system itself is a simple statement, so action systems
can be nested inside each other, but a sub-action
system cannot call actions in the main system.
The system then analyses the remaining actions

to determine which actions may form the body of a
simple procedure. To do this it uses both control
flow and data flow analysis. If it determines that
a collection of actions form a procedure, then these
actions are extracted out as a sub-action system in
the body of the procedure.
After control flow restructuring we have data flow

analysis: in particular an extended form of constant
propagation which can propagate return addresses
through procedure calls. If a dispatch call is en-
countered with a known destination value, then it can
be unfolded and simplified. The same transformation
also deals with conditional assignments to the condi-
tion code (cc) in order to remove references to cc where
possible.
FermaT was able to extract a collection of actions

to form the endgroup procedure, so that the code:

r10 := 112; call endgroup

becomes:

r10 := 112; endgroup(); call dispatch

FermaT determines that the value in r10 will be copied
into destination by the body of endgroup. Within
dispatch the value in destination is compared against
the offsets of all the possible return points. Offset 112
is associated with the label lab, so this call dispatch
can be replaced by call lab.
The control flow and data flow restructuring trans-

formations are iterated until no further improvement
is possible. Figure 1 lists the metrics for the raw
WSL translation and after automatic restructuring
and simplifying transformations have been applied.
This order of magnitude improvement in most of the
metrics is typical for all sizes of assembler module. See
[11] for more details of this part of the transformation
process.

Metric Raw WSL Structured WSL

Statements 561 106
Expressions 1,589 210
McCabe 184 17
Control/Data Flow 520 156
Branch–Loop 145 17
Structural 6,685 751

Figure 1: Metrics Before and After Transformation

begin

f laaa := 1;
!P open(ddin ddname, input var os);
!P open(rdsout ddname, output var os);
wprt[1 . . 17] := “MANAGEMENT REPORT”;
write1(); write1();
wprt[1 . . 20] := “ITEM NET CHANGE”;
write1(); write1();
xsw1 := 0;
do r0 := 0; r1 := 0; r15 := 0;

!P get(ddin ddname var os, r0, r1, r15,wrec);
if !XC end of file(ddin ddname)
then exit(1) fi;

if wrec.writem 6= wlast

then if f laaa 6= 1
then endgroup() fi;

f laaa := 0;
wlast := wrec.writem;
wnet := !XF zap(“hex 0x0C”) fi;

worka := !XF pack(wrec.wrqty, 2);
if wrec.wrtype 6= “R”
then wnet := !XF sp(wnet,worka)
else wnet := !XF ap(wnet,worka) fi;

xsw1 := “hex 0xFF” od;

if xsw1 = “hex 0xFF” then endgroup() fi;
wprt[1 . . 17] := “NUMBER CHANGED = ”;
!P ed(wchange[1 . . 10] var workb);
r4 := !XF address of(workb); r1 := 9;
do if a[r4, 1] 6= “ ” then exit(1) fi;

r4 := r4+ 1;
r1 := r1− 1;
if r1 = 0 then exit(1) fi od;

a[!XF address of(wprt) + 17, r1+ 1]
:= a[r4, r1+ 1];

write1();
!P close(ddin ddname var os);
!P close(rdsout ddname var os)

where

proc endgroup() ≡
wprt[1 . . 4] := wlast;
wsign := “+”;
if wnet < “hex 0x0C” then wsign := “-” fi;
wprt[8 . . 17] := “hex 0x40206B2020206B202120”;
!P edmk(wnet[1 . . 10] var wprt[8 . . 17], r1);
r1 := r1− 1;
a[r1, 1] := wsign;
write1(); write1();
wchange := !XF ap(wchange, “hex 0x1C”) end,

proc write1() ≡
!P put(rdsout ddname,wprt var os);
wprt := wspaces end

end

8 Abstracting a Specification

This is about as far as the FermaT system can
get by purely automatic transformation applications
with no human intervention. The next step in the
abstraction process is to change the data representa-
tion so that files become lists. We unfold the write1
procedure and replace zap, ap and sp calls by their
actual operations. We abstract away from the layout
of the output file by creating a list of the data elements
that appear on each line of output and appending this
list to the output array:

begin

i := 0; f laaa := 1;
output := 〈〈“MANAGEMENT REPORT”〉,

〈“ITEM NET CHANGE”〉〉;
xsw1 := 0;
do i := i+ 1; wrec := input[i];

if i > n then exit(1) fi;
if wrec.writem 6= wlast

then if f laaa 6= 1
then endgroup() fi;

f laaa := 0;
wlast := wrec.writem;
wnet := 0 fi;

if wrec.wrtype 6= “R”
then wnet := wnet− wrec.wrqty
else wnet := wnet+ wrec.wrqty fi;

xsw1 := “hex 0xFF” od;
if xsw1 = “hex 0xFF” then endgroup() fi;
output :=output ++

〈〈“NUMBER CHANGED = ”,wchange〉〉;
where

proc endgroup() ≡
output := output ++ 〈〈wlast,wnet〉〉;
wchange := wchange+ 1 end

end

We can get rid of the switches xsw1 and f laaa by
unrolling the first step of the do . . . od loop and
simplifying. We then use loop inversion to move some
statements to the top of the loop:

i := i+ 1; wrec := input[i];
if i > n
then skip

else wlast := wrec.writem;
wnet := 0;
do if wrec.wrtype 6= “R”

then wnet := wnet− wrec.wrqty
else wnet := wnet+ wrec.wrqty fi;

i := i+ 1; wrec := input[i];
if wrec.writem 6= wlast ∨ i > n
then endgroup();

if i > n
then exit(1)
else wlast := wrec.writem;

wnet := 0 fi fi od fi;

We want to roll the two statements LAST :=
wrec.writem; wnet := 0 into the top of the loop, so
convert the loop to a double-nested loop (loop doub-

ling) and take the statements out of the inner loop
(take out of loop). Then apply loop inversion. We can
then take the statements starting with endgroup() out
of the inner loop also:

i := i+ 1; wrec := input[i];
if i > n
then skip

else do wlast := wrec.writem;
wnet := 0;
do if wrec.wrtype 6= “R”

then wnet := wnet− wrec.wrqty
else wnet := wnet+ wrec.wrqty fi;

i := i+ 1; wrec := input[i];

if wrec.writem 6= wlast ∨ i > n
then exit(1) fi od;

endgroup();
if i > nexit(1) fi od fi;

Finally, the outer if statement can be removed by
converting the outer loop to a while loop (this is the
floop to while transformation):

i := i+ 1; wrec := input[i];
while i < n do

wlast := wrec.writem;
wnet := 0;
do if wrec.wrtype 6= “R”

then wnet := wnet− wrec.wrqty
else wnet := wnet+ wrec.wrqty fi;

i := i+ 1; wrec := input[i];
if wrec.writem 6= wlast ∨ i > n
then exit(1) fi od;

endgroup() od;

Note that, after the initialisation code, the invari-
ant wrec = input[i] is always true, and for i > 1,
wlast = input[i − 1].writem is also true, as is the
invariant wchange = `(output)− 2. So we can remove
these three variables from the program.
The program now consists of two simple nested

loops, the outer while loop iterates over the groups
of records and ends with a call to endgroup(), while
the inner do . . . od loop iterates over the records in
the group.
This suggests that we restructure the data to more

closely match the control structure of the program by
converting the input array to a list of lists where each
sublist consists of a single group of data elements,
so that the outer loop processes sublists one at a
time and the inner loop processes elements of each
sublist. The key to the data restructuring is to split
the input sequence into sections such that the outer
loop processes one segment per iteration. This is easily
achieved with a function split(p,B) which splits p into
non-empty sections with the section breaks occurring
between those pairs of elements of p where B is false.
(See [12] for a formal definition of split). In our case,
the terminating condition on the inner loop provides
the predicate on which to split:

funct same item(x, y) ≡
x.writem = y.writem.

Then the new variable q is introduced with the as-
signment: q := split(input, same item). We index the
q list with two variables k1 and k2 so that q[k1][k2] =
input[i]. To do this we preserve the invariant:

i = +/(` ∗ q[1 . . k1 − 1]) + k

which, together with the invariant input = ++/q gives
the required relationship. Adding these ghost vari-
ables to the program we get:

q := split(input, same item);
i := 1; k1 := 1; k2 := 1;
while i < `(input) do
wnet := 0;
do if input[i].wrtype 6= “R”

then wnet := wnet− input[i].wrqty
else wnet := wnet+ input[i].wrqty fi;

i := i+ 1;
k2 := k2 + 1;
if k2 > `(q[k1]) then k1 := k1 + 1; k2 := 1 fi;
if input[i].writem 6= input[i− 1].writem
∨ i > `(input) then exit(1) fi od;

endgroup() od;

We can now replace references to the concrete vari-
ables input and i by references to the new variables q,
k1 and k2. The key point is that i < `(input) if and
only if k1 < `(q) and

input[i].writem 6= input[i− 1].writem

is true when we have just moved into a new section
of the input: in other words, precisely when k2 =
1. So we can remove the concrete variables from the
program:

q := split(input, same item);
k1 := 1; k2 := 1;
while k1 < `(q) do
wnet := 0;
do if q[k1][k2].wrtype 6= “R”

then wnet := wnet− q[k1][k2].wrqty
else wnet := wnet+ q[k1][k2].wrqty fi;

k2 := k2 + 1;
if k2 > `(q[k1]) then k1 := k1 + 1; k2 := 1 fi;
if k2 = 1 then exit(1) fi od;

endgroup() od;

Now the inner loop reduces to a simple for loop:

q := split(input, same item);
k1 := 1;
while k1 < `(q) do
wnet := 0;
for k2 := 1 to `(q[k1]) step 1 do

if q[k1][k2].wrtype 6= “R”
then wnet := wnet− q[k1][k2].wrqty
else wnet := wnet+ q[k1][k2].wrqty fi;

k1 := k1 + 1;
endgroup() od;

We can express the change to wnet as a function of
the structure:

funct change(s) ≡
if s.wrtype 6= “R” then −s.wrqty else s.wrqty fi.

It is clear that the inner loop is computing the sum
of the change outputs for all the structures in the sub
list q[k1], so we can collapse the inner loop to a reduce
of a map operation:

q := split(input, same item);
k1 := 1;
while k1 < `(q) do
wnet := +/change ∗ q[k1];
k1 := k1 + 1;
endgroup() od;

The endgroup procedure simply appends an element
to the output list:

q := split(input, same item);
k1 := 1;
while k1 < `(q) do
wnet := +/change ∗ q[k1];
output := output ++ 〈〈q[k1][1],wnet〉〉;
k1 := k1 + 1;
endgroup() od;

so we can collapse the outer loop to a map operation.
See Section 12 for the final specification.
This extracted specification looks very different

to the original assembler (see Section 11) but both
programs are semantically equivalent and generate
identical output files (when the output from the spe-
cification is formatted to match the assembler).

9 Conclusion

This paper describes a particularly challenging re-
verse engineering task: using formal program trans-
formations to extract a high-level abstract specific-
ation from an IBM 370 assembler program. The
original assembler program contains several “layers” of
complexity including self-modifying code, a flag used
to direct control flow, a convoluted control flow struc-
ture and so on. Fortunately the powerful automatic
transformations implemented in FermaT allow us to
remove the first few layers of complexity before we
even have to look at the program. Moving to higher
levels of abstraction requires a certain amount of hu-
man intervention: particularly to select appropriate
abstract data structures. However, this intervention
requires only localised analysis of the program. The

higher-level control flow transformations such as loop
unrolling, loop rolling, taking code out of loops etc.,
are all implemented in the FermaT system and any
global analysis required by these transformations is
handled automatically.

10 References

[1] R. J. R. Back, Correctness Preserving Program
Refinements, Mathematical Centre Tracts#131,
Mathematisch Centrum, Amsterdam, 1980.

[2] F. L. Bauer, B. Moller, H. Partsch & P. Pepper,
“Formal Construction by Transformation—Computer
Aided Intuition Guided Programming,” IEEE Trans.

Software Eng. 15 (Feb., 1989).

[3] G. D. Bergland, “A Guided Tour of Program Design
Methodologies,” Computer 14 (Oct., 1981), 18–37.

[4] C. R. Karp, Languages with Expressions of Infinite

Length, North-Holland, Amsterdam, 1964.

[5] C. C. Morgan, Programming from Specifications,
Prentice-Hall, Englewood Cliffs, NJ, 1994, Second
Edition.

[6] C. C. Morgan, K. Robinson & Paul Gardiner, “On
the Refinement Calculus,” Oxford University,
Technical Monograph PRG-70, Oct., 1988.

[7] H. Partsch, Specification and Transformation of

Programs, Springer-Verlag, London, 1990.

[8] H. A. Priestley & M. Ward, “A Multipurpose
Backtracking Algorithm,” J. Symb. Comput. 18
(1994), 1–40, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/backtr-t.ps.gz〉.

[9] M. Ward, “Proving Program Refinements and
Transformations,” Oxford University, DPhil Thesis,
1989.

[10] M. Ward, “Program Analysis by Formal
Transformation,” Comput. J. 39 (1996), 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/
topsort-t.ps.gz〉.

[11] M. Ward, “Assembler to C Migration using the
FermaT Transformation System,” International
Conference on Software Maintenance, 30th Aug–3rd

Sept 1999, Oxford, England (1999).

[12] M. Ward, “Abstracting a Specification from Code,” J.
Software Maintenance: Research and Practice 5 (June,
1993), 101–122, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/prog-spec.ps.gz〉.

[13] M. Ward, “Derivation of Data Intensive Algorithms
by Formal Transformation,” IEEE Trans. Software

Eng. 22 (Sept., 1996), 665–686, 〈http://www.dur.ac.
uk/∼dcs0mpw/martin/papers/sw-alg.ps.gz〉.

11 The Assembler Source

* TST004A0 SAMPLE PROGRAM (MCDONALDS) *

*

REGEQU

*

* PRINT NOGEN

TST004A0 CSECT

STM R14,R12,12(R13)

LR R3,R15

USING TST004A0,R3

ST R13,WSAVE+4

LA R14,WSAVE

ST R14,8(R13)

LA R13,WSAVE

*

OPEN (DDIN,(INPUT))

OPEN (RDSOUT,(OUTPUT))

*

MVC WPRT(17),=CL17’MANAGEMENT REPORT’

BAL R10,WRITE1

BAL R10,WRITE1

MVC WPRT(20),=CL20’ITEM NET CHANGE’

BAL R10,WRITE1

BAL R10,WRITE1

*

MVI XSW1,0

LAA EQU *

GET DDIN,WREC

CLC WRITEM,WLAST

BE LAC

LAAA B LAB

BAL R10,ENDGROUP

LAB MVI LAAA+1,0

MVC WLAST,WRITEM

ZAP WNET,=P’0’

BAL R10,PROCGRP

MVI XSW1,X’FF’

B LAA

LAC BAL R10,PROCGRP

MVI XSW1,X’FF’

B LAA

*

LAD CLI XSW1,X’FF’

BNE LADA

BAL R10,ENDGROUP

LADA EQU *

MVC WPRT(17),=CL17’NUMBER CHANGED = ’

ED WORKB,WCHANGE

LA R4,WORKB

LA R1,9

LADB CLI 0(R4),C’ ’

BNE LADC

LA R4,1(R4)

BCT R1,LADB

LADC EX R1,WMVC1

*WMVC1 MVC WPRT+17(1),0(R4)

BAL R10,WRITE1

*

CLOSE DDIN

CLOSE RDSOUT

*

L R13,WSAVE+4

LM R14,R12,12(R13)

SLR R15,R15

BR R14

*

PROCGRP EQU *

ST R10,WST10A

PACK WORKA,WRQTY

CLI WRTYPE,C’R’

BNE LBA

AP WNET,WORKA

B LBB

LBA SP WNET,WORKA

LBB L R10,WST10A

BR R10

*

ENDGROUP EQU *

ST R10,WST10A

MVC WPRT(4),WLAST

MVI WSIGN,C’+’

CP WNET,=P’0’

BNL LCA

MVI WSIGN,C’-’

LCA EQU *

MVC WPRT+7(10),=X’40206B2020206B202120’

EDMK WPRT+7(10),WNET

BCTR R1,0

MVC 0(1,R1),WSIGN

BAL R10,WRITE1

BAL R10,WRITE1

AP WCHANGE,=P’1’

L R10,WST10A

BR R10

*

WRITE1 EQU *

PUT RDSOUT,WPRT

MVC WPRT,WSPACES

BR R10

*

WMVC1 MVC WPRT+17(1),0(R4)

*

WSAVE DC 18F’0’

WST10A DS F

WREC DS 0CL80

WRITEM DS CL4

DS CL1

WRTYPE DS CL1

DS CL1

WRQTY DS CL3

DS CL70

WPRT DC CL80’ ’

WSPACES DC CL80’ ’

WLAST DC CL4’****’

WCHANGE DC PL4’0’

WNET DC PL4’0’

WORKA DC PL2’0’

WORKB DC XL10’40206B2020206B202120’

WSIGN DC CL1’ ’

XSW1 DC X’00’

*

LTORG

*

DDIN DCB DDNAME=DDIN,

DSORG=PS,

EODAD=LAD,

MACRF=GM

RDSOUT DCB DDNAME=RDSOUT,

DSORG=PS,

MACRF=PM

*

END

12 The WSL Specification

begin

q := split(input, same item);
output :=header ++ process ∗ q

++ 〈〈“NUMBER CHANGED = ”, `(q)〉〉
where

funct same item(x, y) ≡ x.writem = y.writem.
funct process(L) ≡ 〈L[1],+/change ∗ L〉.
funct change(s) ≡
if s.wrtype 6= “R” then −s.wrqty else s.wrqty fi.

end

