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Abstract

In this paper we give a brief introduction to the
foundations of WSL transformation theory and de-
scribe how the concept of program slicing can be form-
alised in the theory. This formalism naturally lends
itself to several generalisations including amorphous
slicing and conditioned slicing. One novel general-
isation is “semantic slicing” which combines slicing
and abstraction to a specification. Interprocedural
semantic slicing has been implemented in the FermaT
transformation system [16]: an industrial-strength
transformation system designed for forward and re-
verse engineering, re-engineering and program com-
prehension.

1 Introduction

In the development of methods for program ana-
lysis and manipulation it is important to start from
a rigorous mathematical foundation. Without such
a foundation, it is all too easy to assume that a
particular transformation is valid, and come to rely
upon it, only to discover that there are certain special
cases where the transformation is not valid.

The way to get a rigorous proof of the correctness
of a transformation is to first define precisely when
two programs are “equivalent”, and then show that
the transformation in question will turn any suitable
program into an equivalent program. To do this,
we need to make some simplifying assumptions: for
example, we usually ignore the execution time of the
program. This is not because we do not care about
efficiency—far from it—but because we want to be
able to use the theory to prove the correctness of
optimising transformations: where a program is trans-
formed into a more efficient version.

More generally, we ignore the internal sequence
of state changes that a program carries out: we are
only interested in the initial and final states (but see
Section 4 for a discussion of operational semantics).

Our mathematical model defines the semantics of a
program as a function from states to sets of states. For
each initial state s, the function f returns the set of
states f(s) which are all the possible final states of the
program when it is started in state s. A special state
⊥ indicates nontermination or an error condition. If
⊥ is in the set of final states, then the program might
not terminate for that initial state (in which case, we
put all the other states into f(s)).

If two programs have the same semantic function
then they are equivalent. A transformation is an
operation which takes any program satisfying its ap-
plicability conditions and returns an equivalent pro-
gram. A refinement of a program is any program
which terminates on all the initial states for which the
original program terminates, and for each such state it
is guaranteed to terminate in a possible final state for
the original program. In terms of semantic functions,
the relation is:

∀s. f2(s) ⊆ f1(s)

since if f1 may not terminate on s then f1(s) contains
all possible states, including ⊥.

2 Transformation Theory

Our transformation theory developed in roughly
the following stages:

1. Start with a very simple and tractable kernel
language;

2. Develop proof techniques based on set theory and
mathematical logic, for proving the correctness of
transformations in the kernel language;



3. Extend the kernel language by definitional trans-
formations which introduce new constructs (the
result is the WSL wide spectrum language);

4. Develop a catalogue of proven WSL transforma-
tions: each transformation is proved correct by
appealing to already proven transformations, or
by translating to the kernel language and apply-
ing the proof techniques directly.

5. Tackle some challenging program development
and reverse engineering tasks to demonstrate the
validity of this approach;

6. Extend WSL with constructs for implementing
program transformations (the result is called
METAWSL);

7. Implement an industrial strength transformation
engine inMETAWSL with translators to and from
existing programming languages. This allowed us
to test our theories on large scale legacy systems
(including systems written in IBM Assembler: see
[16,17,20]).

2.1 The Kernel Language

It turns out that for our kernel language we can
do away with many familiar programming constructs:
including assignments and if statements. We need
just four primitive statements and three compound
statements. Let P and Q be any logical formulae
(technically, these are formulae of an infinitary first
order logic) and x and y be any finite lists of variables.
The primitive statements are:

1. Assertion: {P} is an assertion statement which
acts as a partial skip statement. If the formula
P is true then the statement terminates immedi-
ately without changing any variables, otherwise it
aborts (we treat abnormal termination and non-
termination as equivalent, so a program which
aborts is equivalent to one which never termin-
ates);

2. Guard: [Q] is a guard statement. It always
terminates, and enforcesQ to be true at this point
in the program without changing the values of any

variables. It has the effect of restricting previous
nondeterminism to those cases which will causeQ
to be true at this point. If this cannot be ensured
then the set of possible final states is empty,
and therefore all the final states will satisfy any
desired condition (including Q);

3. Add variables: add(x) adds the variables in x
to the state space (if they are not already present)

and assigns arbitrary values to them. The arbit-
rary values may be restricted to particular values
by a subsequent guard;

4. Remove variables: remove(y) removes the
variables in y from the state space (if they are
present).

while the compound statements are:

1. Sequence: (S1; S2) executes S1 followed by S2;

2. Nondeterministic choice: (S1 u S2) chooses
one of S1 or S2 for execution, the choice being
made nondeterministically;

3. Recursion: (µX.S1) where X is a statement

variable (a symbol taken from a suitable set of
symbols). The statement S1 may contain oc-
currences of X as one or more of its component
statements. These represent recursive calls to the
procedure whose body is S1.

Some of these constructs, particularly the guard
statement, may be unfamiliar to many programmers,
while other more familiar constructs such as assign-
ments and conditional statements appear to be miss-
ing. It turns out that assignments and conditionals,
which used to be thought of as “atomic” operations,
can be constructed out of these more fundamental
constructs. On the other hand, the guard statement
by itself is unimplementable in any programming lan-
guage: for example, the guard statement [false] is
guaranteed to terminate in a state in which false is
true. In the semantic model this is easy to achieve:
the semantic function for [false] has an empty set of
final states for each proper initial state. As a result,
[false] is a valid refinement for any program. Morgan
[11] calls this construct “miracle”. Such considerations
have led to the Kernel language constructs being de-
scribed as “the Quarks of Programming”: mysterious
entities which cannot be observed in isolation, but
which combine to form what were previously thought
of as the fundamental particles.

Assignments can be constructed from a sequence of
addstatements and guards. For example, the assign-
ment x := 1 is constructed by adding x and restricting
its value: (add(〈x〉); [x = 1]). For an assignment such
as x := x+ 1 we need to record the new value of x in
a new variable, x′ say, before copying it into x. So we
can construct x := x+1 as follows: (add(〈x′〉); ([x′ =
x+ 1]; (add(〈x〉); ([x = x′]; remove(x′))))).

Conditional statements are constructed by com-
bining guards with nondeterministic choice. For ex-
ample, if B then S1 else S2 fi can be constructed as
(([B]; S1) u ([¬B]; S2)).
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2.2 The Specification Statement

For our transformation theory to be useful for both
forward and reverse engineering it is important to
be able to represent abstract specifications as part of
the language. Then the refinement of a specification
into an executable program, or the reverse process
of abstracting a specification from executable code,
can both be carried out within a single language.
We define the notation x := x′.Q where x is a se-
quence of variables and x′ the corresponding sequence
of “primed variables”, and Q is any formula. This
assigns new values to the variables in x so that the
formula Q is true where (within Q) x represents the
old values and x′ represents the new values. If there
are no new values for x which satisfy Q then the
statement aborts. The formal definition is:

x := x′.Q =
DF
({∃x′.Q}; (add(x′); ([Q];
(add(x); ([x = x′]; remove(x′))))))

2.3 Semantic Refinement

A state is a collection of variables (the state space)
with values assigned to them; thus a state is a function
which maps from a finite set V of variables to a set
H of values. There is a special extra state ⊥ which is
used to represent nontermination or error conditions.
(It does not give values to any variables). States other
than ⊥ are called proper states. A state transforma-
tion f maps each initial state s in one state space, to
the set of possible final states f(s), which may be in a
different state space. If ⊥ is in f(s) then, by definition,
so is every other state, also f(⊥) is the set of all states
(including ⊥).

Semantic refinement is defined in terms of these
state transformations. A state transformation f is a
refinement of a state transformation g if they have the
same initial and final state spaces and f(s) ⊆ g(s) for
every initial state s. Note that if ⊥ ∈ g(s) for some
s, then by definition g(s) includes every state, so f(s)
can be anything at all. In other words we can correctly
refine an “undefined” program to do anything we
please. If f is a refinement of g (equivalently, g is
refined by f) we write g ≤ f .

A structure for a logical language L consists of
a set of values, plus a mapping between constant
symbols, function symbols and relation symbols of L
and elements, functions and relations on the set of
values. If the interpretation of statement S1 under
the structure M is refined by the interpretation of
statement S2 under the same structure, then we write

S1 ≤M S2. A model for a set of sentences (formulae
with no free variables) is a structure for the language
such that each of the sentences is interpreted as true.
If S1 ≤M S2 for every model M of a countable set ∆
of sentences of L then we write ∆ |= S1 ≤ S2.

Here ∆ is the set of assumptions about the logical
symbols under which the refinement is valid.

2.4 Weakest Preconditions

Given any statement S and any formula R which
defines a condition on the final states for S, we define
the weakest precondition WP(S,R) to be the weakest
condition on the initial states for S such that if S is
started in any state which satisfies WP(S,R) then it
is guaranteed to terminate in a state which satisfies
R. By using an infinitary logic, it turns out that
WP(S,R) has a simple definition for all kernel lan-
guage programs S and all (infinitary logic) formulae
R:

WP({P},R) =
DF

P ∧ R

WP([Q],R) =
DF

Q⇒ R

WP(add(x),R) =
DF

∀x.R

WP(remove(x),R) =
DF

R

WP((S1; S2),R) =DF
WP(S1,WP(S2,R))

WP((S1 u S2),R) =DF
WP(S1,R) ∧ WP(S2,R)

WP((µX.S),R) =
DF

∨

n<ω

WP((µX.S)n,R)

where (µX.S)0 = abort = {false} and (µX.S)n+1 =
S[(µX.S)n/X] which is S with all occurrences of X
replaced by (µX.S)n. (In general, for statements S, T
and T′, the notation S[T′/T] means S with T′ instead
of each T).

3 Extensions to the Kernel Language

The WSL language is built up in a set of layers,
starting with the kernel language. The first level lan-
guage includes specification statements, assignments,
if statements, while and for loops, Dijkstra’s guarded
commands [7] and simple local variables.

The second level language adds do . . . od loops,
action systems and true local variables.

A do . . . od loop is an unbounded or “infinite” loop
which can only be terminated by executing an exit(n)
statement (where the n must be a simple integer, not
a variable or expression). This statement terminates
the n enclosing do . . . od loop.
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A proper sequence is any program such that every
exit(n) is contained within at least n enclosing loops.
If S contains an exit(n) within less than n loops, then
this exit could cause termination of a loop enclosing
S. The set of terminal values of S, denoted TVs(S)
is the set of integers n − d > 0 such that there is an
exit(n) within d nested loops in S which could cause
termination of S. TVs(S) also contains 0 if S could
terminate normally (i.e. not via an exit statement).

For example, if S is the program:

do if x = 0 then exit(3)
elsif x = 1 then exit(2) fi;
x := x− 2 od

Then TVs(S) = {1, 2}.

We earlier mentioned the remarkable properties of
the guard statement: in particular [false] is a valid
refinement for any program or specification. This
is because the set of final states is empty for every
(proper) initial state. A program which may have an
empty set of final states is called a null program and
is inherently unimplementable in any programming
language. So it is important to avoid inadvertantly
introducing a null program as the result of a refine-
ment process. Morgan [11] calls the program [false] a
“miracle”, after Dijkstra’s “Law of Excluded Miracles”
[7]:

WP(S, false) = false

Part of the motivation for our specification statement
is to exclude null programs (Morgan leaves it to the
programmer to ensure that null programs are not
introduced by accident). Fortunately, any WSL pro-
gram with no explicit guard statements is non-null and
obeys Dijkstra’s law.

4 Operational Semantics

The correctness proofs of WSL transformations
only look at the external behaviour of the programs.
To prove that a transformation also preserves the
actual sequence of internal operations then it would
appear that a new definition of the semantics of pro-
grams is required: one which defines the meaning of
a program to be a function from the initial state to
the possible sequences of internal states culminating in
the final state of the program, in other words, an op-
erational semantics. We would then need to attempt
to re-prove the correctness of all the transformations
under the new semantics, in order to find out which
ones are still valid. But we would not have the benefit
of the weakest precondition approach, and we would
not be able to re-use any existing proofs.

It turns out that this extra work is not necessary:
instead the operational semantics can be “encoded” in
the denotational semantics. We add a new variable,
seq, to the program which will be used to record the
sequence of state changes. We then annotate the
original program, adding assignments to seq at the
appropriate places:

A(if B then S1 else S2 fi)

=
DF

if B then A(S1) else A(S2) fi

A(S1; S2) =DF
A(S1); A(S2)

A(v := e) =
DF

seq := seq ++ 〈〈“v”, e〉〉;

and so on for the other constructs.

Given a transformation which turns S1 into the
equivalent program S2, if we want to show that the
transformation also preserves operational semantics
it is sufficient to show that it turns the annotated
program A(S1) into a program equivalent to A(S2).

5 Slicing

The notion of a program slice, originally introduced
by Mark Weiser [21], has been found to be useful
in program analysis, debugging and other areas. In
Weiser’s original definition, a slice of a program is
taken with respect to a program point p and a variable
x; the slice contains all statements of the program
that might affect the value of x at point p. To be
more precise, Weiser defined a program slice S as a
reduced, executable program obtained from a program
P by removing statements, such that S replicates part
of the behavior of P.

To give a formal definition of slicing in WSL we
need to define a reduction of a program. We define
the relation v on WSL programs as follows:

S v S for any program S

skip v S for any proper sequence S

If n > 0 is the largest integer in TVs(S) then:

exit(n) v S

If S′
1 v S1 and S

′
2 v S2 then:

if B then S′
1 else S

′
2 fi v if B then S1 else S2 fi

while B do S′ od v while B do S od

var 〈v := e〉 : S′ end v var 〈v := e〉 : S end

var 〈v := e〉 : S′ end v var 〈v := ⊥〉 : S end
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This last case will be used when the variable v is used
in S, but the initial value e is not used.

For a sequence of statements S1; S2; . . . ; Sn the
reduction relation allows for deleting some of the state-
ments and reducing the remainder. So a reduction of
S is any sequence S′

1; S
′
2; . . . ; S

′
m where m 6 n and

there exists a monotonic, strictly increasing function
φ : {1, . . . ,m} → {1, . . . , n} such that ∀i, 1 6 i 6

n.S′
i v Sphi(i). In this case, we have:

S′
1; S

′
2; . . . ; S

′
m v S1; S2; . . . ; Sn

Lemma 1 Transitivity: If S1 v S2 and S2 v S3 then
S1 v S3.

Lemma 2 Antisymmetry: If S1 v S2 and S2 v S1

then S1 = S2.

5.1 Syntactic Slices

Initially we will consider the special case where p is
the end point of the program, but we will generalise
the variable x to a set X of variables. If X does
not contain all the variables in the final state space
of the program, then the sliced program will not be
equivalent to the original program. However, consider
the setW \X, whereW is the final state space. These
are the variables whose values we are not interested in.
By removing these variables from the final state space
we can get a program which is equivalent to the sliced
program. Suppose program S maps state space V to
W (we write this as S : V → W ), then the effect of
slicing S at its end point on the variables in X is to
generate a program equivalent to S; remove(W \X).

This suggests that we can define a slice of S on X
to be any program S′ v S, such that:

∆ ` S′; remove(W \X) ≈ S; remove(W \X)

However, the requirement that the slice be strictly
equivalent to the original program is too strict in some
cases. Consider the program:

S; x := 0

where S does not contain any assignments to x. If we
are slicing on x then we would like to delete the whole
of S: but the program x := 0; remove(W \{x}) is only
equivalent to S; x := 0; remove(W \ {x}) provided
that S always terminates. But most slicing researchers
see no difficulty in slicing away non-terminating code.
One solution is to add an assertion to show that pro-
gram equivalence is only required where the original

program terminates. So we could define a slice of S
on X to be any program S′ v S, such that:

∆ ` S; remove(W \X)

≈ {WP(S, true)}; S′; remove(W \X)

However, a simpler solution is to simply allow a slice to
be a refinement of the original program. This would
also allow us to slice nondeterministic programs by
reducing the nondeterminism. For example we can
extend the v operator so that:

if true → S1 ut true → S2 fi

can be sliced to S1 or S2 as required.

Even without extending the v operator, simple
deletion of statements can still create a refinement
of the original program. For example, let S be the
program:

x := 0;
x := 1;
if x = 0 ∨ x = 1 → y := 1
ut x = 1 → y := 2 fi;
x := 0;

This program assigns y the value 1 or 2 (the assign-
ment is chosen nondeterministically) and x the value
0. If we delete the assignment x := 1 and the second
x := 0 assignment, then the result is a deterministic
refinement of S which assigns y the value 1. If strict
refinement is not allowed then the best slice we can
get for this program is to delete the first x := 0
assignment.

The foregoing discussion motivates this definition:

Definition 1 A traditional slice of S on X is any
program S v S′, such that:

∆ ` S; remove(W \X) ≤ S′; remove(W \X)

Within this framework, a proof of correctness of an
algorithm for program slicing (such as the algorithm
for interprocedural slicing in [10]) is simply a proof of
the validity of the transformation which deletes the
statements in S to create S′.

5.2 Minimal Slices

Both Weiser’s definition and ours allow the whole
program as a valid slice for any slicing criterion,
however restrictive that criterion is in comparison
to the final state space. For program understand-
ing and debugging, small slices are more useful than
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large slices, so it would appear to be a reasonable
requirement to place on any slicing algorithm that the
slices generated by the algorithm should be minimal:
either in the sense of minimising the total number of
statements, or at least in the weaker sense that no
further statements can be deleted. For example, we
define:

Definition 2 A minimal slice of S on X is any tradi-
tional slice S′ such that if S′′ v S′ is also a traditional
slice, then S′′ = S′.

Note that a minimal slice, according to this definition,
is not necessarily unique and is not necessarily a slice
with the smallest number of statements. Consider the
program S:

x := 2; x := x+ 1; x := 3

A traditional slice can be obtained from S by deleting
the last statement to give S′:

x := 2; x := x+ 1

This program is a minimal slice (according to our
definition), since neither of the remaining statements
can be deleted. But there is another minimal slice of
S, namely x := 3, which has fewer statements than S′.

Although of theoretical interest, the requirement
that the slices be minimal is too restrictive to place
on a slicing algorithm. This is because the general
problem of finding a minimal slice is non-computable!
Let S be any program and consider the program S′

which is S; x := 0, where x is any variable which
does not appear in S. If S never terminates, then
for any valid traditional slice of S′ on {x}, if the
slice still contains the assignment x := 0 then that
statement can be deleted and the result will still be
a valid slice of S′. On the other hand, if S could
terminate, then the sliced program has to set x to zero,
so the final assignment must appear in any valid slice
of S′ on {x}. So if we had a program which computes
minimal traditional slices, then we could solve the
halting problem for any program S by computing the
minimal slice of the program S; x := 0 on {x} and
simply observing if the result ends in the statement
x := 0. If it does, then S terminates, while if it doesn’t
then S does not terminate.

5.3 Semantic Slice

The definition of a traditional slice immediately
suggests a generalisation: why restrict the refinements
to deleting statements? Or, to put it another way,

why insist on the requirement that S′ v S? Harman
and Danicic [8] coined the term “amorphous program
slicing” for a combination of slicing and transform-
ation, but they do not allow refinements other than
removing nontermination. We use the term “semantic
slice” since we are allowing any operation which refines
the semantics of the program on the restricted state
space. A traditional slice could analogously be called
a “syntactic slice” since the v relation is a purely
syntactic one.

Definition 3 A semantic slice of S on X is any pro-
gram S′ such that:

∆ ` S; remove(W \X) ≤ S′; remove(W \X)

Note that while there are only a finite number of
different syntactic slices (if S contains n statements
then there are at most 2n different programs S′ such
that S′ v S) there are infinitely many possible se-
mantic slices for a program: including slices which are
actually larger than the original program. Although
one would normally expect a semantic slice to be no
larger than the original program, [19] discusses cases
where a high-level abstract specification can be larger
than the program while still being arguably easier to
understand and more useful for comprehension and
debugging. See [18] and [19] for a discussion of the
issues.

5.4 Operational Slice

An intermediate option between traditional syn-
tactic slicing and full semantic slicing is to restrict
the transformations to preserve operational semantics,
using the technique in Section 4.

Definition 4 Program S′ is an operational slice of S
on X if there exists a traditional slice S′′ of S on X
such that:

∆ ` A(S′′); ≤ A(S′)

A simpler definition, which does not refer to the inter-
mediate program S′′ is:

∆ ` A(S′); remove(W \X) ≤ A(S); remove(W \X)

But this is incorrect because the seq variable (record-
ing the sequence of states) is one of the variables
removed, which means that all of the annotations are
redundant code! On the other hand, if we add seq to
X to stop it from being removed, then the suggested
definition is much too restrictive: no statements can
be deleted since they all contribute to the value of seq.
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This is the motivation for introducing the “intermedi-
ate” program S′′ in our definition of an operational
slice.

5.5 Slicing At Any Position

To slice at an arbitrary position in the program we
need to preserve the sequence of values taken on by the
given variables at that point in the program. To do
this, we simply insert an assignment to a new variable
slice at the required position which records the current
values of the variables. If X = {x1, . . . , xn} is the set
of variables we are interested in then we insert the
statement:

slice := slice ++ 〈〈x1, . . . , xn〉〉

at the point of interest, in order to record the current
values of the variables at that point. Then we slice at
the end of the program on the single variable slice.

This process can be generalised to slicing at several
points in the program, perhaps with a different set of
“variables of interest” at each point, simply by insert-
ing the slice assignments at the appropriate places.

One peculiarity of this definition is that if we slice
at a point in the program which is within a statement
that does not modify any of the variables in the slicing
criteria, then we can end up with larger slices than
expected. For example, suppose that we slice on x
within this if statement at the point just before the
assignment to z:

if y = 0 then z := 1 fi;

According to our definition, the slice has to preserve
the test y = 0 and therefore preserve any previous
modifications to y. In effect, by slicing at a particular
position we are insisting that the given position should
also appear in the sliced program. This is arguably
correct in the sense that, if the slice has to preserve
the sequence of values taken on by x at a particular
point in the program, then a corresponding point (at
which x takes on the same sequence of values) must
appear in the slice. But if the if statement in the above
example is deleted, then x takes on a shorter sequence
of values! A simple solution to this dilemma is to allow
the slicing algorithm to move all the assignments to
slice upwards out of any enclosing structures as far
as possible, before carrying out the slicing operation
itself.

5.6 Dynamic Slicing

Although the term “dynamic program slice” was
first introduced by Korel in [Korel 1984], it may be
regarded as a non-interactive version of Balzer’s no-
tion of flowback analysis [4]. In flowback analysis,
one is interested in how information flows through
a program to obtain a particular value: the user
interactively traverses a graph that represents the data
and control dependences between statements in the
program. A dynamic slice of a program P is a reduced
executable program S which replicates the behaviour
of P on a particular initial state. We can define
this initial state by means of an assertion. Suppose
V = {v1, v2, . . . , vn} is the set of variables in the initial
state space for P, and V1, V2, . . . , Vn are the initial
values of these variables in the state of interest. Then
the assertion {A}, where A is v1 = V1 ∧ v2 = V2 ∧
· · · ∧ vn = Vn, is a skip for this state and abort for
every other state. We define:

Definition 5 A Dynamic Slice of S with respect to a
formula A of the form

v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn = Vn

(where V = {v1, v2, . . . , vn} is the initial state space
of S) and the set of variables X (a subset of the final
state space W of S) is any program S′ v S such that:

∆ ` {A}; S; remove(W \X)

≤ {A}; S′; remove(W \X)

5.7 Conditioned Slicing

Researchers have generalised dynamic slicing and
combined static and dynamic slicing in various ways.
For example: some researchers allow a finite set of
initial states, or a partial initial state which restricts
a subset of the initial variables to particular values.
In our formalism, all of these generalisations are sub-
sumed under the obvious generalisation of dynamic
slicing: why restrict the initial assertion to be of the
particular form {v1 = V1 ∧ v2 = V2 ∧ · · · ∧ vn =
Vn}?

If we allow any initial assertion, then the result is
called a conditioned slice:

Definition 6 A Conditioned Slice of S with respect
to any formulaA and set of variablesX is any program
S′ v S such that:

∆ ` {A}; S; remove(W \X)

≤ {A}; S′; remove(W \X)
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One way to construct a conditioned slice is to use
the initial condition to simplify the program before
applying a traditional slicing algorithm. Danicic et
al [9] describe a tool called ConSIT, for slicing a
program at a particular point, given that the initial
state satisfies a given condition. Conditioned slicing is
thus a generalisation of both static slicing (where there
are no conditions on the initial state) and dynamic
slicing (slicing based on a particular initial state).

The ConSIT tool works on an intraprocedural sub-
set of C using a three phase approach:

1. Symbolically Execute: to propagate assertions
through the program where possible;

2. Produce Conditioned Program: eliminate state-
ments which are never executed under the given
conditions;

3. Perform Static Slicing: using the traditional
method.

In ConSIT, the slicing condition can be given in the
form of ASSERT statements scattered through the pro-
gram: the authors claim that these ASSERT statement
are equivalent to a single condition on the initial state,
but in general this requires assertions to be formulae
of infinitary logic. This is because the general case
of moving an assertion “backwards” over or out of a
loop breaks down into a countably infinite sequence of
cases depending on the number of possible iterations
of the loop. Fortunately, the assertion statements in
WSL are already expressed in infinitary logic, so this
is not a problem in our framework.

In our transformation framework, the ASSERT state-
ments are simply WSL assertions. The symbolic
execution and producing the conditioned program are
examples of transformations which can be applied
to the WSL program plus assertions. In [14] we
provide a number of transformations for propagating
assertions and eliminating dead code. Using weakest
preconditions, for example, we can move an assertion
(with the appropriate modification) backwards past
any statement:

∆ ` S; {Q} ≈ {WP(S,Q)}; S

For example:

x := y + 1; {x > 0}

becomes
{y + 1 > 0}; x := y + 1

Similarly, an assertion can be moved out of a loop:

∆ ` while B do {Q}; S od

≈ {
∧

n>0

(
∧

i<nWP((S;)
n,B)

⇒WP((S;)n,Q)
)

};
while B do S od

where (S;)0 is skip and (S;)n+1 is S; (S;)n.

Again, a generalisation is suggested: why restrict
ourselves to the assertion moving and dead code re-
moval transformations? A conditioned semantic slice
can be defined as:

Definition 7 Suppose we have a program S and a
slicing criterion, defined from S by inserting assertions
and assignments to the slice variable to form S′. A
conditioned semantic slice of S with respect to this
criterion is any program S′′ such that:

∆ ` S′; remove(W \ {slice})

≤ S′′; remove(W \ {slice})

6 Slicing in FermaT

FermaT is an industrial strength program trans-
formation system, the result of over fifteen years of
research and development, which has recently been re-
leased under the GNU GPL (General Public Licence).
It is available for downloading from:

http://www.dur.ac.uk/∼dcs0mpw/fermat.html

The FermaT syntactic slicer has the following features:

• Handles arbitrary control flow (including WSL
code translated from assembler language) via “ac-
tion systems”;

• Interprocedural slicing, which handles the “call-
ing context” problem correctly [10] combined
with action systems;

• Efficient algorithms for handling large and com-
plex programs;

FermaT implements a large number of powerful pro-
gram transformations, these combined with syntactic
slicing make it possible to use FermaT for general
conditioned semantic slicing.

7 Slicing Example

The following WSL program is a translation of the
C program in [6]:
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i := 1;
posprod := 1;
negprod := 1;
possum := 0;
negsum := 0;
while i 6 n do

a := input[i];
if a > 0
then possum := possum+ a;

posprod := posprod ∗ a
elsif a < 0

then negsum := negsum− a;
negprod := negprod ∗ (−a)

elsif test0 = 1
then if possum > negsum

then possum := 0
else negsum := 0 fi;

if posprod > negprod

then posprod := 1
else negprod := 1 fi fi;

i := i+ 1 od;
if possum > negsum

then sum := possum

else sum := negsum fi;
if posprod > negprod

then prod := posprod

else prod := negprod fi

Suppose we want to slice this program with respect
to the sum variable at the end of the program and with
the additional constraint that all the input values are
positive. We can either add the assertion {∀i. 1 6

i 6 n ⇒ input[i] > 0} to the top of the program, or
equivalently add the assertion {a > 0} just after the
assignment to a at the top of the loop. We also append
the remove statement:

remove(i, posprod, negprod, possum, negsum, n, a, test0)

to the program. This removes all the variables we are
not interested in.

The resulting conditioned syntactic slice is:

i := 1;
possum := 0;
negsum := 0;
while i 6 n do

a := input[i];
{a > 0};
if a > 0
then possum := possum+ a fi;

i := i+ 1 od;
if possum > negsum

then sum := possum fi;
remove(i, posprod, negprod, possum, negsum, n, a, test0)

With semantic slicing we can do much more. For a
start, the test a > 0 is redundant because of the asser-
tion. Also negsum is zero throughout and possum > 0
throughout (since it is initialised to zero and only
modified by having positive numbers added). So a
possible semantic slice is:

i := 1;
possum := 0;
while i 6 n do

a := input[i];
{a > 0};
possum := possum+ a;
i := i+ 1 od;

sum := possum;
remove(i, posprod, negprod, possum, negsum, n, a, test0)

But we can do even more than this. If we first move
the assertion out of the loop, then the loop itself can
be collapsed to a reduce operation over the input array:

{∀i. 1 6 i 6 n⇒ input[i] > 0};
sum := +/input[1 . . n];
remove(i, posprod, negprod, possum, negsum, n, a, test0)

The result is a concise specification of the final value
of sum under the given slicing condition.

8 Conclusion

In this paper we have given a brief introduction
to the foundations of program transformation theory
in WSL and described some applications to program
slicing which existing slicing algorithms. Traditional
slicing, which is restricted to deleting irrelevant state-
ments has the advantage of a unique solution and
may be useful in debugging situations where program-
mers are already familiar with the layout of the code.
But in more general program comprehension, reverse
engineering, reengineering and migration tasks, it is
much more useful to use transformations to simplify
the slices and even present the sliced program at a
higher level of abstraction.

A particularly useful application of conditioned se-
mantic slicing is to remove the error handling code
during program comprehension or reverse engineering.
Often much of the code in a program is there to
handle errors: this code can obscure the structure and
function of the “main line” code. By adding assertions
in appropriate places and slicing on the outputs of
interest a much more concise specification of the main
function can be generated.
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