
Reengineering Software Systems
for Flexibility and Reliability

Hongji Yang and Martin Ward

De Montfort University
Leicester, England

Contents

4 WSL and Transformation Theory 3

4.1 Introduction . 3
4.2 Background . 5
4.3 Syntax and Semantics of the Kernel Language 7

4.3.1 Syntax . 7
4.3.2 The Specification Statement 9
4.3.3 States and State Transformations 10
4.3.4 Refinement of State Transformations 10
4.3.5 Recursion . 11
4.3.6 Weakest Preconditions 11
4.3.7 Weakest Preconditions of Statements 12

4.4 Proving the Correctness of a Refinement 14
4.4.1 Expressing a Statement as a Specification 15
4.4.2 Some Basic Transformations 16
4.4.3 Proof Rules for Implementations 18

4.5 Algorithm Derivation . 19
4.6 Extending the Kernel Language 20
4.7 Example Transformations . 23

4.7.1 Notation . 23
4.7.2 Examples of Transformations 24
4.7.3 Loops and exits . 25
4.7.4 Action Systems . 25

4.8 Why Invent WSL? . 26
4.9 References . 30

1

2 CONTENTS

Chapter 4

WSL and Transformation

Theory

The previous chapter gave an overview of a number of different formal meth-
ods and discussed their application to systems evolution. In this chapter
we will focus on one of the most successful formal methods for reengineering
sequential systems: the WSL program transformation theory and supporting
FermaT workbench.

4.1 Introduction

A computer program is traditionally thought of as a list of detailed instruc-
tions, intended to be executed on a machine in order to produce a particular
result. For example, the program in Figure 4.1 is intended to set z to the
value xn for non-negative integer values of n. It also sets n to zero. Another

z := 1;
while n > 0 do

z := z ∗ x;
n := n− 1 od

Figure 4.1: A simple program

way to think of a computer program is as a description of a function which
translates an input state to an output state. If we start the program in Fig-
ure 4.1 in a state where x has the value 2 and n has the value 3, then it
will run for a while (passing through various intermediate states) and then
terminate in a state where z has the value 8 and n has the value 0.

3

4 CHAPTER 4. WSL AND TRANSFORMATION THEORY

z := xn; n := 0

Figure 4.2: Another program

Another way of describing the same mathematical function is the program
in Figure 4.2. In this case, there is only one intermediate state.
A specification is also a description of a function, but in this case it does

not have to be an executable program. For example, a program which sets
x to a value which when squared equals 4 might be described as:

x := x′.(x′2 = 4)

Informally this specification says “assign a new value x′ to x so that the
condition x′2 = 4 is satisfied.” (The prime on x′ allows us to describe a
relationship between the old value of x and the new value x′ which is about
to be assigned to x).
In this case, there are two possible cases for the final value of x: +2

and −2. The specification does not specify which value is required, so we
can assume that an implementor of the specification is allowed to choose
whichever value is most convenient. To capture this range of implementation
choices, the function we are describing must map an initial state to a set of
possible final states.
A possible implementation of our specification is the simple assignment

x := 2. This is a refinement of the original specification because the set of
possible final states for the implementation is a subset of the final states for
the program.
If a program S1 is a refined by another program S2 then we write S1 ≤

S2. If also S2 ≤ S1 then we say that the two programs are equivalent and
write S1 ≈ S2. In this case, the functions described by the two programs
are identical: even if the programs themselves may look completely different.
If our specifications are written in a formally defined mathematical lan-

guage, then it is possible to prove that a given program is a correct im-
plementation of a given specification. For most programs however we want
to break down this proof into a number of steps with a number of inter-
mediate stages between specification and program. The easiest way to do
this is to include specifications as part of our programming language: then
all the intermediate stages can be written in the same language and all the
proof steps can be carried out in that language. If our language also includes
low-level programming constructs then it is called a wide spectrum language
since it covers the whole spectrum from abstract mathematical specifications
to executable implementations.

4.2. BACKGROUND 5

A program transformation is an operation which can be applied to a pro-
gram to generate another equivalent program (provided any given applicabil-
ity conditions are satisfied). This uses a wide spectrum language called WSL
for which a powerful set of transformations can be used for refining specifi-
cations into programs, reverse engineering programs into specifications and
analysing the properties of programs.

4.2 Background

The following requirements went into the development of the WSL language
and transformation theory:

1. General specifications in any “sufficiently precise” notation should be
included in the language. For sufficiently precise we will mean anything
which can be expressed in terms of mathematical logic with suitable
notation. This will allow a wide range of forms of specification, for
example Z specifications [9] and VDM [11] both use the language of
mathematical logic and set theory (in different notations) to define
specifications;

2. Nondeterministic programs. Since we do not want to have to specify
everything about the program we are working with (certainly not in
the first versions) we need some way of specifying that some execu-
tions will not necessarily result in a particular outcome but one of an
allowed range of outcomes. The implementor can then use this lati-
tude to provide a more efficient implementation which still satisfies the
specification;

3. A well-developed catalogue of proven transformations which do not
require the user to discharge complex proof obligations before they can
be applied. In particular, it should be possible to introduce, analyse
and reason about imperative and recursive constructs without requiring
loop invariants;

4. Techniques are needed to bridge the “abstraction gap” between speci-
fications and programs;

5. Applicable to real programs—not just those in a “toy” programming
language with few constructs. This is achieved by the (programming)
language independence and extendibility of the notation via “defini-
tional transformations”;

6 CHAPTER 4. WSL AND TRANSFORMATION THEORY

6. Scalable to large programs: this implies a language which is expressive
enough to allow automatic translation from existing programming lan-
guages, together with the ability to cope with unstructured programs
and a high degree of complexity.

The FermaT transformation system which is built on the transformation
theory has applications in the following areas:

• Improving the maintainability (in particular, flexibility and reliability,
and hence extending the lifetime) of existing mission-critical software
systems;

• Translating programs to modern programming languages, for example
from obsolete Assembler languages to modern high-level languages;

• Developing and maintaining safety-critical applications. Such systems
can be developed by transforming high-level specifications down to effi-
cient low level code with a very high degree of confidence that the code
correctly implements every part of the specification. When enhance-
ments or modifications are required, these can be carried out on the
appropriate specification, followed by “re-running” as much of the for-
mal development as possible. Alternatively, the changes could be made
at a lower level, with formal inverse engineering used to determine the
impact on the formal specification;

• Extracting reusable components from current systems, deriving their
specifications and storing the specification, implementation and devel-
opment strategy in a repository for subsequent reuse;

• Reverse engineering from existing systems to high-level specifications,
followed by subsequent re-engineering and evolutionary development.

The WSL language is built up in a series of stages or levels, starting with
a very small and mathematically tractable “kernel language”.

The next two sections develop the theory of how to prove the correctness
of a program transformation. It is not necessary for the user to understand
this theory in order to use program transformations in a reverse engineer-
ing or re-engineering project. Program transformation users who are not
interested in the theory are encouraged to skip to Section 4.5.

4.3. SYNTAX AND SEMANTICS OF THE KERNEL LANGUAGE 7

4.3 Syntax and Semantics of the Kernel Lan-

guage

4.3.1 Syntax

Our kernel language consists of four primitive statements, two of which con-
tain formulae of infinitary first order logic, and three compound statements.
Let P and Q be any formulae, and x and y be any non-empty lists of vari-
ables. The following are primitive statements:

1. Assertion: {P} is an assertion statement which acts as a partial skip
statement. If the formula P is true then the statement terminates
immediately without changing any variables, otherwise it aborts (we
treat abnormal termination and non-termination as equivalent, so a
program which aborts is equivalent to one which never terminates);

2. Guard: [Q] is a guard statement. It always terminates, and enforces
Q to be true at this point in the program without changing the values of
any variables. It has the effect of restricting previous nondeterminism
to those cases which will cause Q to be true at this point. If this cannot
be ensured then the set of possible final states is empty, and therefore
all the final states will satisfy any desired condition (including Q);

3. Add variables: add(x) adds the variables in x to the state space (if
they are not already present) and assigns arbitrary values to them;

4. Remove variables: remove(y) removes the variables in y from the
state space (if they are present).

There is a rather pleasing duality between the assertion and guard state-
ments, and the add and remove statements.
For any kernel language statements S1 and S2, the following are also

kernel language statements:

1. Sequence: (S1; S2) executes S1 followed by S2;

2. Nondeterministic choice: (S1 u S2) choses one of S1 or S2 for
execution, the choice being made nondeterministically;

3. Recursion: (µX.S1) where X is a statement variable (taken from a
suitable set of symbols). The statement S1 may contain occurrences
of X as one or more of its component statements. These represent
recursive calls to the procedure whose body is S1.

8 CHAPTER 4. WSL AND TRANSFORMATION THEORY

At first sight, this kernel language may seem to be missing some essential
programming constructs such as assignment statements and if statements.
But the guard statement can be composed with a nondeterministic statement
to get a deterministic result. For example, an assignment such as x := 1 is
constructed by giving x an arbitrary value and then restricting its value to
the one required: add(〈x〉); [x = 1]. For an assignment such as x := x + 1,
where the new value of x depends on the old value, we need to record the
required new value of x in a new variable, x′ say, before copying it into x. So
we can construct x := x+ 1 as follows:

add(〈x′〉); [x′ = x+ 1]; add(〈x〉); [x = x′]; remove(x′)

An if statement such as if B then S1 else S2 fi is constructed from a nonde-
terministic choice with guards to make the choice deterministic:

([B]; S1) u ([¬B]; S2)

For Dijkstra’s guarded commands [7] such as: if B1 → S1 ut B2 → S2 fi

we need to ensure that the command will abort in the case where none of
the guard conditions are true:

{B1 ∨ B2}; ([B1]; S1) u ([B2]; S2)

Three fundamental statements can be defined immediately:

abort =
DF
{false} null =

DF
[false] skip =

DF
{true}

where true and false are universally true and universally false formulae. The
abort statement never terminates when started in any initial state. skip is a
statement which always terminates immediately in the same state in which it
was started. null is a rather unusual statement: it always terminates but the
set of final states is empty. This statement is a “correct refinement” of any
specification whatsoever. Morgan [15] uses the term “miracle” for such state-
ments. Clearly, any null statement, and guard statements in general cannot
be directly implemented: if a program terminates, then it must terminate in
some state or other, and a program cannot in general force a condition to be
true without changing the value of a variable.
Null statements are nonetheless a useful theoretical tool, but as it is only

null-free statements which are implementable, it is important to be able to
distinguish easily which statements are null-free. This is the motivation for
the definition of our specification statement in the next section.
The kernel language statements have been described as “The quarks of

programming” — mysterious objects which (in the case of the guard at least)
are not implementable in isolation, but which in combination, form the fa-
miliar “atomic” operations of assignment, if statements etc.

4.3. SYNTAX AND SEMANTICS OF THE KERNEL LANGUAGE 9

4.3.2 The Specification Statement

A specification describes what a program should do while abstracting away
the implementation details of how the result is to be achieved. In mathemat-
ical terms, a specification is a description of the relationship between input
and output states of the program which does not necessarily describe how
this relationship is to be achieved. Suppose we have a list x of variables which
are the outputs of the program and suppose that the formula Q describes
the relationship between the new values x′ which we wish to assign to x, and
the original values. This specification is described by the statement

x := x′.Q

This statement assigns new values to the variables in x so that the formula
Q is true where (within Q) x represents the old values and x′ represents the
new values. If there are no values x′ which satisfy Q then the statement
aborts. The formal definition of this specification statement is:

x := x′.Q =
DF
{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

The initial assertion ensures that this statement is null-free.
As an example, we can specify a program to sort the array A using a

single specification statement:

A := A′.(sorted(A′) ∧ permutation of(A′, A))

This says “assign a new value A′ to A which is a sorted array and a per-
mutation of the original value of A”, it precisely describes what we want
our sorting program to do without saying how it is to be achieved. In other
words, it is not biased towards a particular sorting algorithm. In [22] we take
this specification as our starting point for the “derivation by formal trans-
formation” of several efficient sorting algorithms, including insertion sort,
quicksort and a hybrid sort.
The simple assignment v := e, where v is a variable and e is an expression,

is defined as the specification statement 〈v〉 := 〈v′〉.(v′ = e).
Morgan and others [14,15,16,17] use a different specification statement,

written
x : [Pre,Post]

where x is a sequence of variables and Pre and Post are formulae if finitary
first-order logic. This statement is guaranteed to terminate for all initial
states which satisfy Pre and will terminate in a state which satisfies Post,
while only assigning to variables in the list x. In our notation an equivalent

10 CHAPTER 4. WSL AND TRANSFORMATION THEORY

statement is {Pre}; add(x); [Post]. The disadvantage of this notation is that
it is not necessarily null-free (the statement 〈〉 : [true, false], for example, is
equivalent to null). As a result, the user is responsible for ensuring that
he never accidentally refines a specification into an (unimplementable) null
statement.

4.3.3 States and State Transformations

The functions which are defined by WSL programs are called state transfor-
mations. These functions map an initial state to a set of possible final states,
with a special “state”, denoted ⊥, to include the possibility that the program
may never terminate. A state s other than ⊥ is a partial function which gives
the values of all the variables in the state space (the set of variables on which
the program operates).
For example, the state transformation for the assignment i := i+1 maps

each initial state s to a singleton set {s′} of final states, where s′ gives the
value s(i) + 1 to the variable i and for all other variables, s′(x) = s(x).
Despite the large amount of research and development on “stateless” func-

tional programming, the vast majority of programs in the world are written in
imperative languages so for a reverse engineering technology it is important
(if not imperative. . .) that we can cope easily with imperative programs.

4.3.4 Refinement of State Transformations

When we say that one program is a refinement of another, we mean that
any specification which the program satisfies is guaranteed to be satisfied
by the program’s refinement. In other words, the refinement is “at least as
good” at satisfying specifications as the original program. A specification of
a program can be defined by giving a set of states (those initial states for
which the program’s behaviour is to be specified) called the defined set and
for each of these initial states, a set of allowed final states. A program satisfies
the specification if, for each initial state in the defined set, the program is
guaranteed to terminate in one of the allowed final states. A specification
can therefore be given in the form of a state transformation f where f(s)
contains ⊥ if s is not in the defined set of states, and for every other s, f(s)
is the set of allowed final states. Conversely, any state transformation also
defines a specification.
We can therefore define “satisfaction of a specification” as a relation be-

tween state transformations. We can also define a refinement of a state
transformation to be a state transformation which satisfies all the specifica-
tions satisfied by the first state transformation.

4.3. SYNTAX AND SEMANTICS OF THE KERNEL LANGUAGE 11

With these definitions it turns out that refinement and satisfaction are
identical concepts: a state transformation f2 is a refinement of state trans-
formation f1 if and only if it satisfies f1 (considered as a specification).

4.3.5 Recursion

A program containing calls to a procedure whose definition is not provided
can be thought of as a function from state transformations to state trans-
formations; since the “incomplete” program can be completed by filling in
the body of the procedure. For a recursive procedure call, we “fill in” the
procedure body with copies of itself: but this means that the result of the
“fill in” is still incomplete since it will still contain recursive calls. However,
the expanded program is “nearer” to completion in some sense which we
will make precise. A recursive procedure can be considered as the “limit”
formed by joining together the results of infinite sequence of such filling-in
operations. More formally:

Definition 4.3.1 Recursion: Suppose we have a function F which maps
the set of state transformations FH(V, V) to itself. We want to define a
recursive state transformation from F as the limit of the sequence of state
transformations F(Ω), F(F(Ω)), F(F(F(Ω))), . . . With the definition of
state transformation given above, this limit (µ.F) has a particularly simple
and elegant definition:

(µ.F) =
DF

⊔

n<ω

Fn(Ω) i.e., for each s ∈ VH: (µ.F)(s) =
⋂

n<ω

Fn(Ω)(s)

From this definition we see that F((µ.F)) = (µ.F). So the state transfor-
mation (µ.F) is a fixed point for the function F ; it is, in fact, the least fixed
point.
We say Fn(Ω) is the “nth truncation” of (µ.F): as n increases the trun-

cations get closer to (µ.F). The larger truncations provide more information
about (µ.F)—more initial states for which it terminates and a restricted set
of final states. The

⊔

operation collects together all this information to form
(µ.F).

4.3.6 Weakest Preconditions

We define the weakest precondition, wp(f, e) of a state transformation f and
a condition on the final state e to be the weakest condition on the initial
state space such that if s satisfies this condition then all elements of f(s)
satisfy e. A condition on states is simply a set of states: the set of states

12 CHAPTER 4. WSL AND TRANSFORMATION THEORY

which satisfy the condition. The special state ⊥ is defined as not satisfying
any condition. So wp(f, e) is simply the set of proper initial states s such
that f(s) is in e.
The importance of weakest preconditions is shown by the fact that the

refinement relation can be characterised using weakest preconditions. State
transformation f1 is refined by f2 if and only if for every final state e we have
wp(f1, e) ⊆ wp(f2, e).
This characterisation of refinement still requires us to examine every pos-

sible final state in order to determine if one state transformation is a re-
finement of another. A theorem in [25] shows that it is only necessary to
examine two special postconditions: the condition true and the condition
x 6= x′, where x is a list of all the variables used in the program and x′ is
a list of variables not used anywhere in the program (and the length of the
two lists is the same).
The fact that refinement can be defined directly from the weakest pre-

condition will later prove to be vitally important.

4.3.7 Weakest Preconditions of Statements

We can also define a weakest precondition for kernel language statements as
a formula of infinitary logic. Infinitary logics are an extension of first order
logic which allows conjunction and disjunction over infinite lists of formulae.
See [12,19] for a general introduction to infinitary logics. These were first
used to define the semantics of programs by Engeler [8] and are used to
express weakest preconditions by Back [3].
WP is a function which takes a statement (a syntactic object) and a

formula from our infinitary logic L (another syntactic object) and returns
another formula in L.

Definition 4.3.2 For any kernel language statement S : V → W , and for-
mula R whose free variables are all in W , we define WP(S,R) as follows:

1. WP({P},R) =
DF

P ∧ R

2. WP([Q],R) =
DF

Q⇒ R

3. WP(add(x),R) =
DF
∀x.R

4. WP(remove(x),R) =
DF

R

5. WP((S1; S2),R) =DF
WP(S1,WP(S2,R))

6. WP((S1 u S2),R) =DF
WP(S1,R) ∧ WP(S2,R)

4.3. SYNTAX AND SEMANTICS OF THE KERNEL LANGUAGE 13

7. WP((µX.S),R) =
DF

∨

n<ωWP((µX.S)n,R)

where (µX.S)0 = abort and (µX.S)n+1 = S[(µX.S)n/X] which is S with all
occurrences of X replaced by (µX.S)n.

For the fundamental statements we have:

WP(abort,R) = false

WP(skip,R) = R

WP(null,R) = true

For the specification statement x := x′.Q we have:

WP(x := x′.Q,R) ⇐⇒ ∃x′Q ∧ ∀x′. (Q⇒ R[x′/x])

For Morgan’s specification statement x : [Pre,Post] we have:

WP(x : [Pre,Post],R) ⇐⇒ Pre⇒ ∀x. (Post⇒ R)

The Hoare predicate (defining partial correctness): {Pre}S{Post} is true
if whenever S terminates after starting in an initial state which satisfies Pre

then the final state will satisfy Post. We can express this is terms of WP as:
Pre⇒ (WP(S, true)⇒WP(S,Post)).
For the if statement discussed in Section 4.3.1:

WP(if B then S1 else S2 fi,R) ⇐⇒

(B⇒WP(S1,R)) ∧ (¬B⇒WP(S2,R))

Similarly, for the Dijkstra guarded command:

WP(if B1 → S1 ut B2 → S2 fi,R)

⇐⇒ (B1 ∨ B2) ∧ (B1 ⇒WP(S1,R)) ∧ (B2 ⇒WP(S2,R))

The weakest precondition “captures” the semantics of a program in the
sense that, for any two programs S1 : V → W and S2 : V → W , the statement
S2 is a correct refinement of S1 if and only if the formula
(

WP(S1,x 6= x′)⇒WP(S2,x 6= x′)
)

∧
(

WP(S1, true)⇒WP(S2, true)
)

is a theorem of first order logic, where x is a list of all variables assigned to
by either S1 or S2, and x

′ is a list of new variable. This means that proving a
refinement or implementation or equivalence amounts to proving a theorem
of first order logic. Back [3,4] and Morgan [15,16] both use weakest precon-
ditions in this way, but Back has to extend the logic with a new predicate
symbol to represent the postcondition, and Morgan has to use second order
logic with quantification over formulae.

14 CHAPTER 4. WSL AND TRANSFORMATION THEORY

4.4 Proving the Correctness of a Refinement

We can define refinement between statements as the refinements of their
interpretations under some structure. This is called semantic refinement :

Definition 4.4.1 Semantic Refinement of statements: If S,S′ : V → W
have no free statement variables and intM(S, V) ≤ intM(S

′, V) for a struc-
ture M of L then we say that S is refined by S′ under M and write S ≤M S′.
If ∆ is a set of sentences in L (formulae with no free variables) and S ≤M S′ is
true for every structure M in which each sentence in ∆ is true then we write
∆ |= S ≤ S′. A structure in which every element of a set ∆ of sentences is
true is called a model for ∆.

It is also useful to be able to prove the correctness of a refinement of
statements directly from their weakest preconditions, without first having to
calculate the corresponding state transformations. From the last chapter we
know that refinement can be characterised by two special weakest precondi-
tions. This is the motivation for the proof-theoretic definition of statement
refinement which uses the weakest precondition WP:

Definition 4.4.2 Proof-Theoretic Refinement: If S,S′ : V → W have no
free statement variables and x is a sequence of all variables assigned to in
either S or S′, and the formulae WP(S,x 6= x′) ⇒ WP(S′,x 6= x′) and
WP(S,x 6= x′) ⇒ WP(S′,x 6= x′) are provable from the set ∆ of sentences,
then we say that S is refined by S′ and write: ∆ ` S ≤ S′.

The next theorem shows that, for countable sets ∆, these two notions of
refinement are equivalent:

Theorem 4.4.3 If S,S′ : V → W have no free statement variables and ∆ is
any countable set of sentences of L then:

∆ |= S ≤ S′ ⇐⇒ ∆ ` S ≤ S′

This theorem provides two different methods for proving a refinement.
More importantly though, it proves the connection between the intuitive
model of a program as something which starts in one state and terminates (if
at all) in some other state, and the weakest preconditions WP(S,x 6= x′) and
WP(S, true). For a nondeterministic program there may be several possible
final states for each initial state. This idea is precisely captured by the
state transformation model of programs and refinement. In the “predicate
transformer” model of programs, which forms the foundation for [15] and
others, the meaning of a program S is defined to be a function which maps a

4.4. PROVING THE CORRECTNESS OF A REFINEMENT 15

postconditionR to the weakest preconditionWP(S,R). This model certainly
does not “correspond closely with the way that computers operate” ([15],
P.180), although it does have the advantage that weakest preconditions are
generally easier to reason about than state transformations. So a theorem
which proves the equivalence of the two models allows us to prove refinements
using weakest preconditions, while doing justice to the more intuitive model.
The theorem also illustrates the importance of using the infinitary logic

Lω1ω rather than a higher-order logic, or indeed a larger infinitary logic. Back
and von Wright [5] describe an implementation of the refinement calculus,
based on (finitary) higher-order logic using the refinement rule ∀R.WP(S1,R)⇒
WP(S2,R) where the quantification is over all predicates (boolean state func-
tions). However, the completeness theorem fails for all higher-order logics.
Karp [12] proved that the completeness theorem holds for Lω1ω and fails for
all infinitary logics larger than Lω1ω. Finitary logic is not sufficient since it is
difficult to determine a finite formula giving the weakest precondition for an
arbitrary recursive or iterative statement. Using Lω1ω (the smallest infinitary
logic) we simply form the infinite disjunction of the weakest preconditions
of all finite truncations of the recursion or iteration. We avoid the need
for quantification over formulae because, with our proof-theoretic refinement
method, the two postconditions x 6= x′ and true are sufficient. Thus we can
be confident that the proof method is both consistent and complete, in the
sense that:

1. If the weakest precondition formula can be proved, for statement S1

and S2, then S2 is certainly a refinement of S1, and

2. If S1 is refined by S2 then there certainly exists a proof the correspond-
ing WP formula.

Basing our transformation theory on any other logic would not provide the
two different proof methods we require.

Definition 4.4.4 Statement Equivalence: If ∆ ` S ≤ S′ and ∆ ` S′ ≤ S

then we say that statements S and S′ are equivalent and write: ∆ ` S ≈ S′.
Similarly, if ∆ |= S ≤ S′ and ∆ ` S ≤ S′ then we write ∆ ` S ≈ S′.
From Theorem 4.4.3 we have: ∆ |= S ≈ S′ iff ∆ ` S ≈ S′.

4.4.1 Expressing a Statement as a Specification

The formulae WP(S,x 6= x′) and WP(S, true) tell us everything we need to
know about S in order to determine whether a given statement is equiva-
lent to it. In fact, as the next theorem shows, if we also know WP(S, false)

16 CHAPTER 4. WSL AND TRANSFORMATION THEORY

(which is always false for null-free programs) then we can construct a spec-
ification statement equivalent to S. Although this would seem to solve all
reverse engineering problems at a stroke, and therefore be a great aid to soft-
ware maintenance and reengineering, the theorem has fairly limited value for
practical programs: especially those which contain loops or recursion. This is
partly because there are many different possible representations of the speci-
fication of a program, only some of which are useful for software maintenance.
In particular the maintainer wants a short, high-level, abstract version of the
program, rather than a mechanical translation into an equivalent specifica-
tion (see [27] for a discussion on defining different levels of abstraction). In
practice, a number of techniques are needed including a combination of au-
tomatic processes and human guidance to form a practical program analysis
system. An example of such a system is the FermaT system [6,29,30] which
uses transformations developed from the theoretical foundations presented
here.
The theorem is of considerable theoretical value however in showing the

power of the specification statement: in particular it tells us that the specifi-
cation statement is certainly sufficiently expressive for writing the specifica-
tion of any computer program whatsoever. Secondly, we will use the theorem
in Chapter three to add a join construct to the language and derive its weak-
est precondition. This means that we can use join to write programs and
specifications, without needing to extend the kernel language. Thirdly, we
use it in Chapter three to add arbitrary (countable) join and choice operators
to the language, again without needing to extend the kernel language.

Theorem 4.4.5 The Representation Theorem: Let S : V → V , be any ker-
nel language statement and let x be a list of all the variables assigned to by
S. Then for any countable set ∆ of sentences:

∆ ` S ≈ [¬WP(S, false)]; x := x′.(¬WP(S,x 6= x′) ∧ WP(S, true))

4.4.2 Some Basic Transformations

In this section we prove some fundamental transformations of recursive pro-
grams. The general induction rule shows how the truncations of a recur-
sion capture the semantics of the full recursion—each truncation contains
some information about the recursion, and the set of all truncations is suffi-
cient for proving refinement and equivalence. This induction rule proves to
be an essential tool in the development of a transformation catalogue: we
will use it almost immediately in the proof of a fold/unfold transformation
(Lemma 4.4.9).

4.4. PROVING THE CORRECTNESS OF A REFINEMENT 17

Lemma 4.4.6 The Induction Rule for Recursion: If ∆ is any countable set
of sentences and the statements S,S′ : V → V have the same initial and final
state spaces, then:

(i) ∆ ` (µX.S)k ≤ (µX.S) for every k < ω;

(ii) If ∆ ` (µX.S)n ≤ S′ for all n < ω then ∆ ` (µX.S) ≤ S′.

An important property for any notion of refinement is the replacement
property: if any component of a statement is replaced by any refinement
then the resulting statement is a refinement of the original one. This is
easily proved by our usual induction on the structure of statements. The
induction steps use the following Lemma:

Lemma 4.4.7 Replacement: if ∆ ` S1 ≤ S′1 and ∆ ` S2 ≤ S′2 then:

1. ∆ ` (S1; S2) ≤ (S′1; S
′

2);

2. ∆ ` (S1 u S2) ≤ (S′1 u S′2);

3. ∆ ` (µX.S1) ≤ (µX.S′1).

Proof: Cases (1) and (2) follow by considering the corresponding weakest
preconditions. For case (3) use the induction hypothesis to show that for all
n < ω: (µX.S1)

n ≤ (µX.S′1)
n (since (µX.S1)

n has a lower depth of recursion
nesting than (µX.S1)) and then apply the induction rule for recursion. ¥

We can use these lemmas to prove a much more useful induction rule
which is not limited to a single recursive procedure, but can be used on
statements containing one or more recursive components. For any state-
ment S, define Sn to be S with each recursive statement replaced by its nth
truncation.

Lemma 4.4.8 The General Induction Rule for Recursion: If S is any state-
ment with bounded nondeterminacy, and S′ is another statement such that
∆ ` Sn ≤ S′ for all n < ω, then ∆ ` S ≤ S′.

The next lemma uses the general induction rule to prove a transformation
for folding (and unfolding) a recursive procedure by replacing all occurrences
of the call by copies of the procedure. In [21] we generalise this transformation
to a “partial unfolding” where selected recursive calls may be conditionally
unfolded or replaced by a copy of the procedure body.

Lemma 4.4.9 Fold/Unfold: For any S : V → V :

∆ ` (µX.S) ≈ S[(µX.S)/X]

18 CHAPTER 4. WSL AND TRANSFORMATION THEORY

4.4.3 Proof Rules for Implementations

In this subsection we will develop two general proof rules. The first is for
proving the correctness of an potential implementation S, of a specification
expressed in the form {P}; x := x′.Q. The second is for proving that a
given recursive procedure statement is a correct implementation of a given
statement. This latter rule is very important in the process of transforming
a specification, probably expressed using recursion, into a recursive proce-
dure which implements that specification. In [21,23,24,26] techniques are
presented for transforming recursive procedures into various iterative forms.
This theorem is also useful in deriving iterative implementations of speci-
fications, since very often the most convenient derivation is via a recursive
formulation.

Implementation of Specifications

The first proof rule is based on a proof rule in Back [3], we have extended this
to include recursion and guard statements. This proof rule provides a means
of proving that a statement S is a correct implementation of a specification
{P}; x := x′.Q. Any Z specification, for example, can be cast into this form.

Theorem 4.4.10 Let ∆ be a countable set of sentences of L. Let V be a
finite nonempty set of variables and S : V → W a statement. Let y be a
list of all the variables in V − x̃ which are “assigned to” somewhere in S.
Let x0, y0 be lists of distinct variables not in S or V with `(x0) = `(x) and
`(y0) = `(y).

If ∆ ` (P ∧ x = x0 ∧ y = y0)⇒WP(S,Q[x0/x,x/x
′] ∧ y = y0)

then ∆ ` {P}; x := x′.Q ≤ S

The premise states that if x0 and y0 contain the initial values of x and
y then S preserves the value of y and sets x to a value x′ such that the
relationship between the initial value of x and x′ satisfies Q.

This theorem is really only useful for simple implementations of a single
specification statement. More complex specifications will be implemented
as recursive or iterative procedures: in either case we can use the following
theorem to develop a recursive implementation as the first stage. This can
be transformed into an iterative program (if required) using the techniques
on recursion removal in [21,23,24,26].

4.5. ALGORITHM DERIVATION 19

Recursive Implementation of General Statements

In this section we prove an important theorem on the recursive implementa-
tion of statements. We use it to develop a method for transforming a general
specification into an equivalent recursive statement. These transformations
can be used to implement recursive specifications as recursive procedures,
to introduce recursion into an abstract program to get a “more concrete”
program (i.e. closer to a programming language implementation), and to
transform a given recursive procedure into a different form. The theorem is
used in the algorithm derivations of [22,28] and [21].

Suppose we have a statement S′ which we wish to transform into the
recursive procedure (µX.S). We claim that this is possible whenever:

1. The statement S′ is refined by S[S′/X] (which denotes S with all oc-
currences of X replaced by S′). In other words, if we replace recursive
calls in S by copies of S′ then we get a refinement of S′;

2. We can find an expression t (called the variant function) whose value
is reduced before each occurrence of S′ in S[S′/X].

The expression t need not be integer valued: any set Γ which has a well-
founded order 4 is suitable. To prove that the value of t is reduced it is
sufficient to prove that if t 4 t0 initially, then the assertion {t ≺ t0} can
be inserted before each occurrence of S′ in S[S′/X]. The theorem combines
these two requirements into a single condition:

Theorem 4.4.11 If 4 is a well-founded partial order on some set Γ and t
is a term giving values in Γ and t0 is a variable which does not occur in S
then if

∀t0. ((P ∧ t 4 t0)⇒ S′ ≤ S[{P ∧ t ≺ t0}; S
′/X]) (4.1)

then P⇒ (S′ ≤ (µX.S))

4.5 Algorithm Derivation

It is frequently possible to derive a suitable procedure body S from the
statement S′ by applying transformations to S′, splitting it into cases etc.,
until we get a statement of the form S[S′/X] which is still defined in terms
of S′. If we can find a suitable variant function for S[S′/X] then we can
apply the theorem and refine S[S′/X] to (µX.S) which is no longer defined
in terms of S′.

20 CHAPTER 4. WSL AND TRANSFORMATION THEORY

As an example we will consider the familiar factorial function. Let S′ be
the statement r := n!. We can transform this (by appealing to the definition
of factorial) to show that:

S′ ≈ if n = 0 then r := 1 else r := n.(n− 1)! fi

Separate the assignment:

S′ ≈ if n = 0
then r := 1
else n := n− 1; r := n!; n := n+ 1; r := n.r fi

So we have:

S′ ≈ if n = 0 then r := 1 else n := n− 1; S′; n := n+ 1; r := n.r fi

The positive integer n is decreased before the copy of S′, so if we set t to be
n, Γ to be N and 4 to be 6 (the usual order on natural numbers), and P to
be true then we can prove that for all n 6 t0, S

′ is refined by:

if n = 0 then r := 1 else n := n− 1; {n < t0}; S
′; n := n+ 1; r := n.r fi

So we can apply Theorem 4.4.11 to prove that S′ is refined by:

(µX. if n = 0 then r := 1 else n := n− 1; X; n := n+ 1; r := n.r fi)

and we have derived a recursive implementation of factorial.
This theorem is a fundamental result towards the aim of a system for

transforming specifications into programs since it “bridges the gap” between
a recursively defined specification and a recursive procedure which imple-
ments it. It is of use even when the final program is iterative rather than
recursive since many algorithms may be more easily and clearly specified
as recursive functions—even if they may be more efficiently implemented
as iterative procedures. This theorem may be used by the programmer to
transform the recursively defined specification into a recursive procedure or
function which can then be transformed into an iterative procedure.
The theorem may also be used “in reverse” to prove that a given spec-

ification is a valid abstraction of a given program: this is used for reverse
engineering in Chapter 8.

4.6 Extending the Kernel Language

The kernel language we have developed is particularly elegant and tractable
but is too primitive to form a useful wide spectrum language for the trans-
formational development of programs. For this purpose we need to extend

4.6. EXTENDING THE KERNEL LANGUAGE 21

the language by defining new constructs in terms of the existing ones using
“definitional transformations”. A series of new “language levels” is built up,
with the language at each level being defined in terms of the previous level:
the kernel language is the “level zero” language which forms the founda-
tion for all the others. Each new language level automatically inherits the
transformations proved at the previous level, these form the basis of a new
transformation catalogue. Transformations of each new language construct
are proved by appealing to the definitional transformation of the construct
and carrying out the actual manipulation in the previous level language. This
technique has proved extremely powerful and has led to the development of
a practical transformation system (FermaT) which implements a large num-
ber of transformations. Over the last sixteen years, the WSL language and
transformation theory have been developed in parallel: we have only added
a new construct to the language after we have developed a sufficiently com-
plete set of transformations for dealing with that construct. We believe that
this is one of the reasons for the success of our language, as witnessed by the
practical utility of the program transformation tool.
The first level language consists of the following constructs:

1. Sequential composition: The sequencing operator is associative so we
can eliminate the brackets:

S1; S2; S3; . . . ; Sn =DF
(. . . ((S1; S2); S3); . . . ; Sn)

2. Deterministic Choice: We can use guards to turn a nondeterministic
choice into a deterministic choice:

if B then S1 else S2 fi =DF
(([B]; S1) u ([¬B]; S2))

3. Specification statement:

x := x′.Q =
DF

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

4. Simple Assignment: If Q is of the form x′ = t where t is a list of terms
which do not contain x′ then we abbreviate the assignment as follows:

x := t =
DF

x := x′.(x′ = t)

If x contains a single variable, we write x := t for 〈x〉 := 〈t〉;

22 CHAPTER 4. WSL AND TRANSFORMATION THEORY

5. Nondeterministic Choice: The “guarded command” of Dijkstra [7]:

if B1 → S1

ut B2 → S2

. . .
ut Bn → Sn fi

=
DF
({B1 ∨ B2 ∨ · · · ∨ Bn};
(. . . (([B1]; S1) u

([B2]; S2)) u
. . .))

6. Deterministic Iteration: We define a while loop using a new recursive
procedure X which does not occur free in S:

while B do S od =
DF
(µX.(([B]; S) u [¬B]))

7. Nondeterministic Iteration:

do B1 → S1

ut B2 → S2

. . .
ut Bn → Sn od

=
DF

while (B1 ∨ B2 ∨ · · · ∨ Bn) do
if B1 → S1

ut B2 → S2

. . .
ut Bn → Sn fi od

8. Initialised Local Variables:

begin x := t : S end =
DF
(add(x); ([x = t]; (S; remove(x))))

9. Counted Iteration. Here, the loop body S must not change i, b, f or s:

for i := b to f step s do S od =
DF

begin i := b :
while i 6 f do

S; i := i+ s od end

10. Block with procedure calls:

begin S where proc X ≡ S′. end =
DF

S[(µX.S′)/X]

One aim for the design of the first level language is that it should be easy
to determine which statements are potentially null. A guard statement such
as [x = 1] is one example: if the preceding statements do not allow 1 as a
possible value for x at this point then the statement is null. The guard [false]
is another example which is always null. If a state transformation is non-null
for every initial state then it is called null-free. We claim that all first-level
language statements without explicit guard statements are null free. (This is
why we do not include Morgan’s specification statement x : [Pre,Post] in the

4.7. EXAMPLE TRANSFORMATIONS 23

first level language, because it cannot be guaranteed null-free. For example
the specification 〈〉 : [true, false] is equivalent to [false] which is everywhere
null).
A null-free statement will satisfy Dijkstra’s “Law of the Excluded Mira-

cle” [7]:
WP(S, false) ⇐⇒ false

.
The level two language introduces multi-exit loops and Action systems

(cf [1,2]). Level three adds local variables and parameters to procedures,
functions and expressions with side effects.

4.7 Example Transformations

This section introduces some basic program transformations which are useful
in their own right and which also form the “building blocks” for more powerful
transformations.

4.7.1 Notation

Sequences: s = 〈a1, a2, . . . , an〉 is a sequence, the ith element ai is denoted
s[i], s[i . . j] is the subsequence 〈s[i], s[i+1], . . . , s[j]〉, where s[i . . j] = 〈〉
(the empty sequence) if i > j. The length of sequence s is denoted `(s),
so s[`(s)] is the last element of s. We use s[i . .] as an abbreviation for
s[i . . `(s)].

Sequence concatenation: s ++ t = 〈s[1], . . . , s[`(s)], t[1], . . . , t[`(t)]〉.

Subsequences: The assignment s[i . . j] := t[k . . l] where j−i = l−k assigns
s the value 〈s[1], . . . , s[i− 1], t[k], . . . , t[l], s[j + 1], . . . , s[`(s)]〉.

Stacks: Sequences are also used to implement stacks, for this purpose we
have the following notation: For a sequence s and variable x: x

pop

←− s

means x := s[1]; s := s[2 . .]. For a sequence s and expression e: s
push

←− e
means s := 〈e〉 ++ s.

Map: The map operator ∗ returns the sequence obtained by applying a given
function to each element of a given sequence: (f ∗ 〈a1, a2, . . . , an〉) =
〈f(a1), f(a2), . . . , f(an)〉.

Reduce: The reduce operator / applies an associative binary operator or
function to a list and returns the resulting value: (⊕/〈a1, a2, . . . , an〉) =

24 CHAPTER 4. WSL AND TRANSFORMATION THEORY

a1 ⊕ a2 ⊕ · · · ⊕ an. So, for example, if s is a list of integers then +/s
is the sum of all the integers in the list, if q is a list of lists then
+/(` ∗ q) = `(++/q) is the total length of all the lists in q.

Projection: The projection functions π1, π2,. . . are defined as π1(〈x, y〉) =
x, π2(〈x, y〉) = y, and more generally, for any sequence s: πi(s) = s[i].

The operation of splitting a sequence into a sequence of non-empty sec-
tions at the points where a predicate fails is generally useful so we will define
the following notation:
Suppose we have a sequence p which we want to split into sections at

those points i where the predicate B(p[i], p[i + 1]) is false. In other words,
we want to define a new sequence of non-empty sequences q such that the
concatenation of the sequences in q is equal to p (i.e. ++/q = p) and B is
true within each section and false on the boundary from one section to the
next.
Define the function indexq : N×N → N by indexq(j, k) = +/(` ∗ q[1 . . j−

1])+k. This function maps the position of an element in the q structure (the
kth component of the jth subsequence) into the corresponding position in
the p structure. For all j ∈ 1 . . `(q) and k ∈ 1 . . `(q[j]) we have p = ++/q ⇒
p[indexq(j, k)] = q[j][k]. On this domain, indexq is 1–1, so it has a well-defined
inverse. This inverse index−1

q maps an index i of p to a pair 〈j, k〉 such that

p[i] = q[j][k]. So the function sectionq = π1 · index−1

q will give the section in
q in which an element of p occurs.
With this notation, we can define a split function split(p,B) = q which

splits p into non-empty sections with the section breaks occurring between
those pairs of elements of p where B is false. The formal definition uses
sectionq to find the “section breaks”:

Definition 4.7.1 split(p,B) = q where:

(++/q) = p ∧ 〈〉 /∈ set(q)

∧ ∀i ∈ 1 . . `(p)− 1.
(

(B(p[i], p[i+ 1])⇒ sectionq(i+ 1) = sectionq(i))

∧ (¬B(p[i], p[i+ 1])⇒ sectionq(i+ 1) = sectionq(i) + 1)
)

The split function will be used in the re-engineering case study in Chap-
ter 9.

4.7.2 Examples of Transformations

In this section we describe a few of the transformations we will use later:

4.7. EXAMPLE TRANSFORMATIONS 25

Expand IF statement

The if statement:
if B then S1 else S2 fi; S

can be expanded over the following statement to give:

if B then S1; S else S2; S fi

4.7.3 Loops and exits

Statements of the form do S od, where S is a statement, are “infinite”
or “unbounded” loops which can only be terminated by the execution of
a statement of the form exit(n) (where n is an integer, not a variable or
expression) which causes the program to exit the n enclosing loops. To
simplify the language we disallow exits which leave a block or a loop other
than an unbounded loop. This type of structure is described in [13] and more
recently in [20];
A simple transformation is the following: If S is a proper sequence then:

∆ ` do if B then exit fi; S od ≈ while ¬B do S od

A proper sequence is any statement within which each exit(n) occurs nested
within at least n loops. Such a statement cannot therefore terminate any
enclosing do . . . od loop: the next statement to be executed will always be
the next statement in the sequence.
If S1 is a proper sequence, then the loop:

do S1; S2 od

can be “inverted” to:
S1; do S2; S1 od

This transformation can be used in the forward direction in order to move
the exit statements closer to the top of the loop (preparatory to converting
to a while loop perhaps). It can also be used in the reverse direction to merge
the two copies of statement S1 into a single copy ans so reduce the size of
the program.

4.7.4 Action Systems

An action is a parameterless procedure acting on global variables (cf [1,2]).
It is written in the form A ≡ S. where A is a statement variable (the name
of the action) and S is a statement (the action body). A set of (mutually

26 CHAPTER 4. WSL AND TRANSFORMATION THEORY

recursive) actions is called an action system. An occurrence of a statement
call X within the action body refers to a call of another action. The action
bodies may include calls to the special action Z, which does not have a body.
Instead, a call Z causes immediate termination of the whole action system
even if there are unfinished recursive calls.
A regular action system is one in which execution of any action body

always leads to an action call (which may be a call Z). Within such a
system, no action call ever returns and the system can only terminate by
calling Z. Such an action system is equivalent to a collection of labels and
goto statements: in fact, any program which is implemented using labels
and gotos can be translated into a regular action system.

4.8 Why Invent WSL?

For restructuring purposes it is useful to work within a language which has
the following features:

• Simple, regular, and formally defined semantics;

• Simple, clear, and unambiguous syntax;

• A wide range of transformations with simple, mechanically-checkable
correctness conditions.

No existing programming language which is widely in use today meets any
of these criteria.
For reverse engineering it is extremely useful to work within a single

wide-spectrum language within which both low-level programs and high-level
abstract specifications are easily represented.
For migration between programming languages it is important that the

transformation system language should not be biased towards a particular
source or target language.
These are the considerations which led to the development of the WSL

language. The language has been developed gradually over the last ten years,
in parallel with the development of the transformation theory. This parallel
development has ensured that WSL is ideally suited for program transforma-
tion work: the design of the language ensures that developing and proving
the correctness of transformations is straightforward and, most importantly,
the correctness conditions for the transformations are easy to check mechan-
ically. This last point was important for the success of our transformation
system.

4.8. WHY INVENT WSL? 27

We believe that the formal foundations of our language and transfor-
mation theory were essential to the success of the project. The practice of
implementing any reasonable-looking transformation without a formal proof
of correctness is very dangerous: the author has discovered errors in transfor-
mations published in reputable journals [Arsac Syntactic 1982], but the errors
were only uncovered after having attempted (and failed) to prove that the
transformations were correct. Since our tool works by applying a vast num-
ber of transformations in sequence, any unreliability in the transformations
will have serious repercussions on the reliability of the tool. In practice, the
work on proving the correctness of known transformations has been a major
driving force in the discovery of new transformations.
As a result, it turns out that, unlike any existing programming language,

WSL is not Turing equivalent, for the following two reasons.

1. WSL includes constructs such as “guard” and “join” which are not
implementable. For example, the guard [x > 0] is guaranteed to ter-
minate, does not change the value of any variable, and guarantees that
x > 0 on termination. Guards and join are very useful for writing
specifications, and therefore equally important for reverse engineering.
(see below)

2. Even if one were to exclude the “miracles” introduced by guard and
join, WSL is still more powerful than a Turing machine, since it is
based on first order logic. It is possible to write a WSL program which
solves the halting problem for Turing machines. (But not possible to
write a Turing machine which solves the halting problem for Turing
machines).

To prove the second point, note the following:

1. There exists a Turing machine will term(x, n) which can determine if
the given (encoding of a) Turing machine x will terminate in n or fewer
steps. (The machine “simulates” x for n steps—the details can be
found in any text on computation theory);

2. This Turing machine can be translated into a WSL program T which
takes x and n as input variables and sets output variable r to 0 or 1 as
appropriate;

3. From T one can construct the formula WP(T, r = 1), with free vari-
ables x and n, which is true iff the value of x encodes a Turing machine
which will terminate in n or fewer steps;

28 CHAPTER 4. WSL AND TRANSFORMATION THEORY

4. Then the WSL procedure:

proc Will Term(x) ≡
if ∃n ∈ N.WP(T, r = 1) then r := 1

else r := 0 fi.

will set r to 1 iff the given x encodes a Turing machine which will
terminate in any number of steps. (Note N denotes the set of all positive
integers). This completes the proof.

General formulae, unrestricted set operations, references to infinite objects
(eg the set N above), and so on, are not allowed in executable programming
languages, but are essential for a useable specification language. Therefore,
they are equally important for a language which is to form the basis for a
reverse engineering system.
For a useable program transformation system it is essential that the base

language satisfies the “replacement property”. Informally, the property is:
“Replacing any component of a program by a semantically equivalent com-
ponent will result in a semantically equivalent program”. This property is
foundational to how our tool works: select a component, apply a transfor-
mation, select another component. . . However, the authors are aware of no
commercial programming language which satisfies this property.
For example, in C the statement x = x*2 + 1 is equivalent to x = x*2;

x = x + 1. But the statement if (y == 0) x = x*2 + 1 is not equivalent
to if (y == 0) x = x*2; x = x + 1.
In JOVIAL, among many other restrictions, there is a limit to the level of

nesting of FOR loops. Therefore any transformation for replacing a GOTO
construct with an equivalent FOR loop will fail in certain positions1. Par-
ticular implementations of other languages will almost certainly have similar
limitations and restrictions which make it extremely difficult, if not impossi-
ble, to discover valid semantics-preserving transformations in that language:
let alone prove their correctness.
An obvious disadvantage of working in a separate language to the source

language of the legacy system is that translators to and from WSL will have
to be written. Fortunately, for the “old fashioned” languages typical of legacy
systems, this is not much more difficult than writing a parser for the language,
which in turn is a simple application of well-developed compiler technology
for which there is a wide variety of tool support available. In addition, there
are three important advantages to our approach:

1We recall encountering a similar problem with BASIC on a Compukit UK101 micro-
processor system many years ago!

4.8. WHY INVENT WSL? 29

1. Using a collection of translators for different languages, it becomes
possible to migrate from one language to another via WSL. We are
currently working on an Assembler to COBOL II migration: the aim
is to produce “high level” COBOL II, not something which looks as
though it was written by an Assembler programmer!

2. The second is that the “translator” can be very simple-minded and not
have to worry about introducing redundancies, dead code, unstructured
code etc. Once we are within the formal language and transformation
system, such redundancies and infelicities can be eliminated automat-
ically by applying a series of general-purpose restructuring, simplifica-
tion and data-flow analysis transformations.

3. Thirdly, our sixteen year’s work on transformation theory can be re-
applied to a new language simply by writing a translator for that lan-
guage. It would be impossible to re-use the development work for a
COBOL transformation system in the development of a JOVIAL trans-
formation system. Even a different version of COBOL could invalidate
many transformations and involve a lot of re-work.

Based on our results, translation to a formal language is the best way to set
about any serious reverse engineering or migration work.
Our work has been criticised by some practitioners for its emphasis on the

use of formal methods and formally specified languages. This is odd because
the programming language and its support libraries form the basic building
materials for software engineering. But no serious engineer would expect to
build with components whose properties are not precisely, formally, concisely
specified (eg. this beam is specified to be able to take this much load under
these operating conditions, etc.) No serious engineer would tolerate “stan-
dard” components which differ in an undefined way in their properties and
behaviour from supplier to supplier. A serious engineer does not think twice
about screwing a nut from one supplier onto a bolt from another supplier:
he expects them to fit as a matter of course! A serious engineer expects to
have to master a certain amount of mathematics in order to do his or her
job properly: differential equations, integration, fluid dynamics, stress mod-
elling, etc. This is far more than the elementary set theory and logic required
to understand WSL.
With regard to the “undefined” behaviour of many commercial languages

in the presence of syntactic or semantic errors (including out of bounds sub-
scripts and the infamous “buffer overflow” problem) Hoare [10] said:

In any respectable branch of engineering, failure to observe such
elementary precautions would have long been against the law.

30 CHAPTER 4. WSL AND TRANSFORMATION THEORY

This was way back in 1960.
D. L. Parnas at the International Conference on Software Engineering in

Baltimore, Maryland in 1993 [18] made the following points on the relation-
ship between software engineers and “real” engineering:

• “Engineering” is defined as “The use of science and technology to build
useful artifacts”;

• Classical engineers use mathematics to describe their products (calcu-
lus, PDEs, nonlinear functions, etc.);

• Computer systems designers should use engineering methods if they
are to deserve the name “Software Engineers”. This will include the
use of mathematics.

4.9 References

[1] Arsac, J., “Transformation of Recursive Procedures,” in Tools and Notations

for Program Construction, D. Neel, Ed. Cambridge: Cambridge University
Press, pp. 211–265, 1982.

[2] Arsac, J., “Syntactic Source to Source Transforms and Program
Manipulation,” Comm. ACM , 22, no. 1, pp. 43–54, Jan., 1979.

[3] Back, R. J. R., Correctness Preserving Program Refinements (Mathematical
Centre Tracts), vol. 131. Amsterdam, Mathematisch Centrum, 1980.

[4] Back, R. J. R., “A Calculus of Refinements for Program Derivations,” Acta
Informatica, 25, pp. 593–624, 1988.

[5] Back, R. J. R. and J. von Wright, “Refinement Concepts Formalised in
Higher-Order Logic,” Formal Aspects of Computing , 2, pp. 247–272, 1990.

[6] Bull, T., “An Introduction to the WSL Program Transformer,” presented at
Conference on Software Maintenance 26th–29th November 1990, San Diego,
Nov., 1990.

[7] Dijkstra, E. W., A Discipline of Programming. Englewood Cliffs, NJ,
Prentice-Hall, 1976.

[8] Engeler, E., Formal Languages: Automata and Structures. Chicago,
Markham, 1968.

[9] Hayes, I. J., Specification Case Studies. Englewood Cliffs, NJ, Prentice-Hall,
1987.

[10] Hoare, C. A. R., “The Emperor’s Old Clothes: The 1980 ACM Turing Award
Lecture,” Comm. ACM , 24, no. 4, pp. 75–83, Feb., 1981.

4.9. REFERENCES 31

[11] Jones, C. B., Systematic Software Development using VDM. Englewood
Cliffs, NJ, Prentice-Hall, 1986.

[12] Karp, C. R., Languages with Expressions of Infinite Length. Amsterdam,
North-Holland, 1964.

[13] Knuth, D. E., “Structured Programming with the GOTO Statement,”
Comput. Surveys, 6, no. 4, pp. 261–301, 1974.

[14] Morgan, C. C., “The Specification Statement,” Trans. Programming Lang.

and Syst., 10, pp. 403–419, 1988.

[15] Morgan, C. C., Programming from Specifications. Englewood Cliffs, NJ,
Prentice-Hall, 1994, Second Edition.

[16] Morgan, C. C. and K. Robinson, “Specification Statements and Refinements,”
IBM J. Res. Develop., 31, no. 5, 1987.

[17] Morgan, C. C. and T. Vickers, On the Refinement Calculus. New
York–Heidelberg–Berlin, Springer-Verlag, 1993.

[18] Parnas, D. L., Presentation at the International Conference on Software
Engineering, Baltimore, 21st–23rd May 1993.

[19] Scott, D., “Logic with Denumerably Long Formulas and Finite Strings of
Quantifiers,” in Symposium on the Theory of Models, J. Addison, L. Henkin
and A. Tarski, Eds. Amsterdam: North-Holland, pp. 329–341, 1965.

[20] Taylor, D., “An Alternative to Current Looping Syntax,” SIGPLAN Notices,
19, no. 12, pp. 48–53, Dec., 1984.

[21] Ward, M., “Proving Program Refinements and Transformations,” Oxford
University, DPhil Thesis, 1989.

[22] Ward, M., “Derivation of a Sorting Algorithm,” Durham University, Technical
Report, 1990, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/
sorting-t.ps.gz〉.

[23] Ward, M., “A Recursion Removal Theorem—Proof and Applications,”
Durham University, Technical Report, 1991, 〈http://www.dur.ac.uk/
∼dcs0mpw/martin/papers/rec-proof-t.ps.gz〉.

[24] Ward, M., “A Recursion Removal Theorem,” Springer-Verlag, New
York–Heidelberg–Berlin, Proceedings of the 5th Refinement Workshop,
London, 8th–11th January, 1992, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/ref-ws-5.ps.gz〉.

[25] Ward, M., “Foundations for a Practical Theory of Program Refinement and
Transformation,” Durham University, Technical Report, 1994, 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/foundation2-t.ps.gz〉.

[26] Ward, M., “Recursion Removal/Introduction by Formal Transformation: An
Aid to Program Development and Program Comprehension,” Comput. J., 42,
no. 8, pp. 650–673, 1999.

32 CHAPTER 4. WSL AND TRANSFORMATION THEORY

[27] Ward, M., “A Definition of Abstraction,” J. Software Maintenance: Research

and Practice, 7, no. 6, pp. 443–450, Nov., 1995, 〈http://www.dur.ac.uk/
∼dcs0mpw/martin/papers/abstraction-t.ps.gz〉.

[28] Ward, M., “Derivation of Data Intensive Algorithms by Formal
Transformation,” IEEE Trans. Software Eng., 22, no. 9, pp. 665–686, Sept.,
1996, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/sw-alg.ps.gz〉.

[29] Ward, M. and K. H. Bennett, “A Practical Program Transformation System
For Reverse Engineering,” presented at Working Conference on Reverse
Engineering, May 21–23, 1993, Baltimore MA, 1993, 〈http://www.dur.ac.
uk/∼dcs0mpw/martin/papers/icse.ps.gz〉.

[30] Ward, M., F. W. Calliss and M. Munro, “The Maintainer’s Assistant,”
presented at Conference on Software Maintenance 16th–19th October 1989,
Miami Florida, 1989, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/
MA-89.ps.gz〉.

